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Preface

These notes were used to lecture a course at TU Graz for masters level students in the summer
semester of 2020. The topics come piecemeal from a variety of sources: Sections 1 and 6 follow
to some extent the exposition from “The Probabilistic Method” by Alon and Spencer; Section 2
follows the survey paper “Dependent Random Choice” by Fox and Sudakov; Section 3 presents
results from papers of Krivelevich and Sudakov, Riordan and also Erde, Kang and Krivelevich;
Section 4 owes a great deal to to Galvin’s series of lectures on entropy; Section 5 follows in part
the survey “The mathod of hypergraph containers” by Balogh, Morris and Samotij as well as
the lecture notes on “The method of hypergraph containers” of Morris; Section 7 follows in part
the book “Introduction to random graphs” of Frieze and Karoński.
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1 The Lovás Local Lemma

1.1 The Local Lemma

In a typical probabilistic proof of a combinatorial result, one has to show that the probability
of a certain event is positive. Many of these proofs tend to show more, that the probability is
not only positive but very large, often tending to 1 as the ‘dimension’ of the problem considered
grows.

On the other hand, there is a trivial case in which one can show that a certain event holds
with positive, but very small, probability. Suppose we have n mutually independent events Ai,
each of which hold with probability p > 0, then the probability that they all hold simultaneously
is at least pn, which is positive, but may be exponentially small in n.

It is natural to expect that something similar will be true if the events are not entirely
independent, but only ‘mostly independent’, for some sensible definition of ‘mostly independent’.
One way to define this is as follows.

Definition. Let A1, A2, . . . , An be events in an arbitrary probability space. A directed graph
D = ([n], E)is called a dependency digraph for the events A1, A2, . . . , An if for all i the event Ai
is mutually independent of all the events {Aj : (i, j) 6∈ D}.

So for example when A1, A2, . . . , An are all mutually independent a dependency diggraph
is the empty graph En. Note that we are not simply insisting that Ai is independent of Aj if
(i, j) 6∈ E (in particular since this is a symmetric property, and so we could use an undirected
graph), the property we are checking is stronger, and so it’s not sufficient to simply put an edge
in D between every pair of dependent events.

We might expect that there are some natural conditions which tell us that when the depen-
dency digraph is sparse enough, there is some positive probability that all the events hold. In
the following, to follow standard notations, we will think of the events which all happen with
small probability as being the negation of a set of events Ai, which we will denote by Ai.

Lemma 1.1 (The Lovás Local Lemma). Let A1, A2, . . . , An be events in an arbitrary probability
space. Suppose that D = ([n], E) is a dependency digraph for the events {Ai : i ∈ [n]} and there
exists x1, x2, . . . xn ∈ [0, 1) such that

P(Ai) ≤ xi
∏

(i,j)∈E

(1− xj)

for all i ∈ [n]. Then

P

(
n⋂
i=1

Ai

)
≥

n∏
i=1

(1− xi).

In particular, with positive probability no event Ai holds.
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One way to think of these weightings xi is as pessimistic estimates for the probability P(Ai).
Indeed, if the conditions of the lemma are satisfied, then we always have that P(Ai) ≤ xi, however
we need to choose these upper bounds with some slack, since we need to account for the extra
term

∏
(1 − xj). The larger we choose each individual xi to be, the larger its contribution as

(1− xi) will be in the products it appears in. So, in order to choose appropriate xi we have to
balance out these two competing concerns.

Often in application the setsAi satisfy certain symmetric conditions which allow us to simplify
the (rather complicated looking) conditions in Lemma 1.1.

Corollary 1.2. [Symmetric Local Lemma] Let A1, A2, . . . , An be events in an arbitrary proba-
bility space. Suppose that each event Ai is mutually independent of a set of all but at most d
of the other Aj (equivalently there is a dependency digraph with all outdegrees less than d), and
that P(Ai) ≤ p for all i. If ep(d+ 1) ≤ 1 then

P

(
n⋂
i=1

Ai

)
> 0.

Proof. If d = 0 then the events are mutually independent and the result follows trivially. Other-
wise let xi = 1/(d+ 1) < 1. There is a dependency digraph D = (V,E) such that all outdegrees
are less than d and so

xi
∏

(i,j)∈E

(1− xj) ≥
1

d+ 1

(
1− 1

d+ 1

)d
.

Note that it is a simple check that

(
1− 1

d+ 1

)d
=

(
1 +

1

d

)−d
> e−1

and so

xi
∏

(i,j)∈E

(1− xj) >
1

e(d+ 1)
≥ p ≥ P(Ai).

Therefore by Lemma 1.1 the conclusion holds.

1.2 The Linear Aboricity of Graphs

Definition. Given a graph G the aboricity of G is the minimum number of forests into which
the edge set E(G) can be partitioned. A linear forest is a forest in which every component is a
path, and the linear aboricity of a graph, which we denote by la(G), is the minimum number of
linear forests into which the edge set E(G) can be partitioned.

The following simple conjecture is longstanding.

Conjecture 1.3 (The Linear Aboricity Conjecture). Let G be a d-regular graph. Then

la(G) =

⌈
d+ 1

2

⌉
.
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Note that since every d-regular graph on n vertices has nd/2 edges and every linear forest has
at most n− 1 edges we have that la(G) > d/2, and so the content of the conjecture is to show
that every d-regular graph can indeed by decomposed into a small number of forests. Also, since
every graph of maximum degree ∆ can be embedded into a ∆-regular graph, the conjecture is
equivalent to the statement that every G with satisfies la(G) ≤ d(∆(G) + 1)/2e.

Much work has been done towards the conjecture and the best known bound without a
probabilistic argument was that la(G) . 3∆(G)/5. .

It will be convenient to work instead with directed graphs. A d-regular digragph is a directed
graph in which the indegree and outdegree of every vertex is precisely d. A linear directed forest
is a directed graph in which every connected component is a directed path and the dilinear
aboricity of a directed graph D, which we denote by dla(D), is the minimum number of linear
directed forests into which the edge set E(G) can be partitioned. We then have the directed
version of the Linear Aboricity Conjecture.

Conjecture 1.4. Let D be a d-regular digraph. Then

dla(D) = d+ 1.

Note that since the edges of any connected undirected 2d-regular graph can be oriented along
an Euler cycle, so the the resulting digraph is d-regular, Conjecture 1.4 for d implies Conjecture
1.3 for 2d.

It is a simple exercise to show that a graph G contains an independent set of size at least
n/(∆(G)+1). We will require for our proof a lemma that tells us that, at the price of decreasing
the size by a constant factor, we can find a large independent set with additional structure

Lemma 1.5. Let H = (V,E) be a graph with maximum degree ∆, and let V = V1∪V2∪ . . .∪Vr
be a partition of V into r pairwise disjoint sets. Suppose that |Vi| ≥ 2e∆ for each i ∈ [r]. Then
there is an independent set W ⊂ V that contains a vertex from each Vi.

Proof. Without loss of generality we may assume that |Vi| = d2e∆e = g for each i. We pick a
single vertex from each Vi independently and uniformly at random and let W be the union of
these vertices. We will show that with positive probability W is independent.

For each edge f ∈ E(H) let Af be the event that both ends of f are contained in W . Clearly
P(Af ) ≤ 1

g2 .

As is common in applications of the local lemma, there is a set of mutually independent
underlying variables, here given by the vertex vi chosen in each Vi, such that each of our events
is determined by some subset of these variables. In this case a natural choice for a dependency
digraph is to join a pair of events if they depend on a common variable (so in fact we end up with
a symmetric digraph). It is easy to check that this in fact determines a dependency digraph.

What does this mean in the current application? Well, if the endpoints of f lie in Vi and Vj
then Af depends only on the value of vi and vj . Hence in our dependency digraph f will be
joined to all the edges which have an endpoint in Vi or Vj
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There are at most ∆|Vi ∪ Vj | ≤ 2g∆ edges meeting Vi ∪ Vj and hence there is a dependency
digraph for the events Af in which the maximum degree is < 2g∆ (a strict inequality as f meets
Vi∪Vj). Since e.2g∆.(1/g2) = 2e∆/g < 1 we have by Corollary 1.2 that with positive probability
none of the events Af hold. However this means that W is an independent set containing a
vertex from each Vi.

We note at this point that Lemma 1.5 enables us to prove Conjecture 1.4 for digraphs with
no short directed cycle. The directed girth of a graph is the minimum length of a directed cycle
in that graph.

Theorem 1.6. Let D = (V,E) be a d-regular directed graph with directed girth g ≥ 8ed. Then

dla(D) = d+ 1.

Proof. We first use Hall’s theorem to decompose D into d-pairwise disjoint 1-regular spanning
subgraphs, D1, D2, . . . , Dd. Strictly we form a bipartite graph on (A,B) where A = B = V and
let (a, b) be an edge if and only if (a, b) is a directed edge in D. Then this bipartite graph is
d-regular and so we can decompose it into d pefect matchings, each of which correspond to a
1-regular spanning directed subgraph.

Each Di is a union of vertex disjoint directed cycles, Ci1 , Ci2 , . . . Ciri . Let E1, E2, . . . , Er the
edge sets of each of these cycles, taken over each 1 ≤ i ≤ d. We have that {Ei : i ∈ [r]} is a
partition of the edge set of D and by the girth condition each |Ei| ≥ g ≥ 8ed.

We consider the (undirected) line graph L of D, that is the graph whose vertex set is E and
two edges are adjacent if and only if they share a vertex. Note that L is 4d − 2 regular and
{Ei : i ∈ [r]} is now a partition of the vertex set of L. Since |Ei| ≥ 8ed ≥ 2e(4d−2) we can apply
Lemma 1.5 to L to find an independent set in L containing an element of each Ei. However this
corresponds to a matching M in D containing at least one edge from each cycle Cij .

Hence if we consider the subgraphs D1 \M,D2 \M, . . . ,Dd \M,M we see that each Di \M
is a linear directed forest, and M is a matching, and between them they cover the edges of D.
Hence

dla(D) ≤ d+ 1.

Finally we note that, as before, D has |V |d edges and each directed linear forest can have at
most |V | − 1 edges, and so

dla(D) ≥ |V |d
|V | − 1

> d.

Therefore dla(D) = d+ 1 as claimed.

In order to prove a result for general digraphs we show that we can decompose almost all of
the edges of a regular digraph into a relatively small number of almost regular digraphs with
large girth, together with a small remainder. To do so we need the following technical lemma,
which also uses the Local Lemma in its proof.
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Lemma 1.7. Let D = (V,E) be a d-regular directed graph, where d is sufficiently large, and let
p be an integer such that 10

√
d ≤ p ≤ 20

√
d. Then there is a p-colouring of V , f : V → [p], such

that, for each v ∈ V and each i ∈ [p] the numbers

N+(v, i) = |{u ∈ V : (v, u) ∈ E and f(u) = i}|

and
N−(v, i) = |{u ∈ V : (u, v) ∈ E and f(u) = i}|

satisfy ∣∣∣∣N+(v, i)− d

p

∣∣∣∣ , ∣∣∣∣N−(v, i)− d

p

∣∣∣∣ ≤ 3

√
d

p
log (d).

Proof. We pick a random p-colouring f : V → [p] by choosing f(v) for each v ∈ V independently
and uniformly at random from [p]. For each v ∈ V and i ∈ [p] let A+

v,i be the event that

∣∣∣∣N+(v, i)− d

p

∣∣∣∣ > 3

√
d

p
log (d)

and similarly for A−v,i . We have that N+(v, i) is a binomial random variable with expectation

d/p, so if we let t = 3
√

d
p log (d) then, by the Chernoff bounds we have that

P(A+
v,i) < 2e

− t2

2( dp+ t
3 ) ≤ 2e

−
9 dp log (d)

3 dp ≤ d−3

and similarly for A−v,i. As before we have a set of mutually independent variables, the colour

f(v) of each vertex, which determine our events. Clear A±v,i is determined by the set of variables

{f(w) : w ∈ N±(v)}. Since the in and out degree of each vertex is d, it follows that A±v,i will share

variables with at most 2d2 many other A±u,j for any fixed j. Therefore there is a dependency

digraph for these events with maximum degree ≤ 2d2p. Since

e
1

d3
(2d2p+ 1) ≤ 1

we have that by Corollary 1.2 there is a non-zero probability that none of the events A+
v,i, A

−
v,i

happen. Therefore there is a colouring f satisfying the required properties.

We are now ready to argue the general case.

Theorem 1.8. There exists a constant c > 0 such that for every d-regular digraph D

dla(D) ≤ d+ cd
3
4 (log (d))

1
2 .

Proof. Let D = (V,E) be an arbitrary d-regular digraph. Let p be a prime satisfying 10
√
d ≤

p ≤ 20
√
d (which exists by Bertrand’s postulate). By Lemma 1.7 there is a p-colouring f of V
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such that the conclusions of the lemma hold. For each i ∈ [p] let Di = (V,Ei) be the spanning
subgraph of D defined by

Ei = {(u, v) ∈ E : , f(v) ≡ f(u) + i mod(p)}.

By assumption we have that the maximum outdegree ∆+
i and the maximum indegree ∆−i of Gi

are at most

d

p
+ 3

√
d

p
log (d).

Moreover, for each i 6= p, the length of every directed cycle in Gi is divisible by p, and so
each Gi has directed girth gi ≥ p. It is a simple exercise to see that Gi can be completed, by
adding vertices and edges, to a ∆i-regular digraph with ∆i = max (∆+

i ,∆
−
i ), which has the

same directed girth gi. Since gi > 8e∆i (for all sufficiently large d) we have that by Theorem
1.6 that, for each i 6= p

dla(Gi) ≤ ∆i + 1 ≤ d

p
+ 3

√
d

p
log (d) + 1.

To bound the size of Gp we note that, Gp can also be completed to a ∆p-regular digraph,
which can then be partitioned into ∆p disjoint 1-regular spanning subgraphs as before using
Hall’s theorem. By splitting each of these into two matchings we see that

dla(Gp) ≤ 2∆p ≤ 2
d

p
+ 6

√
d

p
log (d).

These last two inequalities together with the fact that 10
√
d ≤ p ≤ 20

√
d imply that

dla(G) ≤ (p− 1)

(
d

p
+ 3

√
d

p
log (d) + 1

)
+ 2

d

p
+ 6

√
d

p
log (d)

= d+
d

p
+ (p− 1) + 3(p− 1)

√
d

p
log (d) + 6

√
d

p
log (d)

≤ d+ cp

√
d

p
log (d)

≤ d+ cd
3
4 (log (d))

1
2

Since any 2d-regular graph G can be oriented so the resulting digraph is d-regular (and since
every (2d−1)-regular G is a subgraph of a 2d-regular graph), we have as an immediate corollary
of Theorem 1.8.

Corollary 1.9. There exists a constant c > 0 such that for every d-regular graph G

la(G) ≤ d

2
+ cd

3
4 (log (d))

1
2 .
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1.3 Acyclic edge-chromatic number

The Local Lemma has been quite successful in applications to graph colouring. Indeed, often
in colouring problems we would like to take a random colouring, but avoid the ‘local’ events
that particular substructures are coloured ‘incorrectly’. For example, if we wish to find a proper
colouring the bad events are adjacent vertices which receive the same colour. Structural prop-
erties of the graph can then be used to bound the dependencies between these bad events.

As an example let’s consider the following notion of colouring for a graph G: We say an
edge colouring χ : E(G) → [k] is proper if no two adjacent edges receive the same colour and
is acyclic if there is no 2-coloured cycle. The acyclic edge-chromatic number of G, denoted by
a(G) is the least number of colours in a proper acyclic edge-colouring of G.

Since every proper edge-colouring of G must use at least ∆(G) many colours there is a trivial
bound that a(G) ≥ ∆(G). However it was conjectured by Alon, Sudakov and Zaks that this
bound is not far from the truth.

Conjecture 1.10. For any graph G, a(G) ≤ ∆(G) + 2.

Alon, Macdiarmid and Reed showed, using the local lemma, that a(G) ≤ 60∆(G) and whilst
this constant has been improved, the best known bound is still a(G) ≤ 16∆(G) which follows
from a closer analysis of their proof.

Theorem 1.11. For any graph G, a(G) ≤ 100∆(G)

Proof. Let us define a random colouring χ : E(G) → [100∆] by choosing the colour of each
vertex uniformly and independently. We wish to show that with positive probability χ is a
proper acyclic colouring. There are two types of bad events that we wish to avoid:

� The event AB that a pair of adjacent edges B is monochromatic;

� The event AC that a cycle C of length 2k is properly two-coloured.

Let us call the first a type 1 event and the second a type k event. Clearly neither event is likely to
happen: The first event happens with probability 1

100∆ and the second happens with probability

at most 2
(

∆
2

) (
1

100∆

)2k ≤ ( 1
100∆

)2k−2
.

Furthermore, note that each edge e lies in at most ∆2k−2 different cycles of length 2k. Indeed,
this can been seen by considering the number possibilities for the tth edge ft in the cycle as
t = 1, . . . , 2k. The first edge is fixed by our choice of e = f1. We then have at most ∆ many
choices for f2, as it must be adjacent to f1 and then, having chosen f2, at most ∆ many choices
for f3 and so on. However, once we’ve chosen f2k−1 then fk is fixed, since it must join f2k−1

and f1. Hence we have at most ∆2k−2 many possible choices during this proces.

As before, there is a set of mutually independent variables, here given by the colour of each
edge {χ(e) : e ∈ E(G)}, such that each of our events is determined by some subset of these
variables. We then form a dependency digraph by joining a pair of events if they depend on a
shared variable.

10



By our observation in this digraph each Type 1 event is connected to at most 4∆ type 1
events and at most 2∆2k−2 type k events and each type ` event is connected to at most 4`∆
type 1 events and at most 2`∆2k−2 type k events.

To choose our estimators xB and xC let us take xB = x1 := 1
50∆ for each event of type 1 and

xC = xk :=
(

1
50∆

)2k−2
for each event of type k. Then for events of type 1

xi
∏

(i,j)∈E

(1− xj) = x1(1− x1)4∆
∏
k

(1− xk)2∆2k−1

=
1

50∆

(
1− 1

50∆

)4∆∏
k

(
1−

(
1

50∆

)2k−2
)∆2k−2

≥ 1

50∆
e−

8
50

∏
k

e−2( 1
50)

2k−1

=
1

50∆
e−

8
50 e−2

∑
k(

1
50)

2k−2

≥ 1

50∆
e−

1
5

≥ 1

100∆
= P(AB),

since e−
1
5 ≥ 1

2 . Similarly for events of type `

xi
∏

(i,j)∈E

(1− xj) = x`(1− x1)4`∆
∏
k

(1− xk)2`∆2k−2

=

(
1

50∆

)2`−2(
1− 1

50∆

)4`∆∏
k

(
1−

(
1

50∆

)2k−2
)2`∆2k−2

≥
(

1

50∆

)2`−2

e−
8`
50

∏
k

e−4`( 1
50)

2k−2

≥
(

1

50∆

)2`−2

e−
8`
50 e−4`

∑
k(

1
50)

2k−1

≥
(

1

100∆

)2`−2

22`−2e−
`
5

≥ P(AC)e`(2 log 2− 1
5

)−2

≥ P(AC),

since ` ≥ 4. Hence the conditions of Lemma 1.1 hold, and so we can conclude that with positive
probability χ is a proper acyclic colouring, and hence a(G) ≤ 100∆.

Alon, Sudakov and Zaks were able to show that the conjecture holds for graphs of large girth.

Theorem 1.12. If G is a graph with maximum degree ∆ and girth at least 2000∆ log ∆ then
a(G) ≤ ∆ + 2.

Proof. Let us denote by g the girth of G, so that g ≥ 2000∆ log ∆. By Vizing’s Theorem there
is at least one proper colouring χ : E(G)→ [∆ + 1] using at most ∆ + 1 colours. However, this
colouring might contain monochromatic cycles.
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We will randomly recolour each edge independently with a new colour ∆+2, with probability
1

32∆ , and we claim that with positive probability this results in a proper acyclic colouring χ′.

As before we have two types of bad events that we wish to avoid:

� The event AB that a pair of adjacent edges B is monochromatic in χ′;

� The event AC that a cycle C of length 2k is two-coloured in χ′.

Again, each event is quite unlikely to happen. Indeed, since χ is proper a pair of adjacent edges
B is monochromatic in χ′ only if both are recoloured ∆ + 2, which happens with probability

1
322∆2 . Furthmore a cycle of length 2k can be two-coloured if either it was two coloured in χ,

and no edge was recoloured, with probability at most
(
1− 1

32∆

)2k
, or if half the cycle was a

single colour in χ and the other half were all recoloured, with probability at most
(

1
32∆

)k
. This

suggests that there are really three types of bad events we should consider. Let us say an even
cycle D is half-coloured if it contains a monochromatic matching and let us denote by H(D)
the set of those edges (note that in a properly 2-coloured cycle there are two such sets). We
consider the following events:

� The event AB that a pair of adjacent edges B is monochromatic in χ′;

� The event A′C that a cycle C of length 2k is two-coloured in χ and no edge is recoloured;

� The event A′D that a cycle D of length 2k is half-coloured in χ and every edge not in H(D)
is recoloured.

Let us call these events type I, II(k) and III(k).

Note that each edge is contained in at most 2∆ pairs of adjacent edges and is contained
in at most ∆ many 2-coloured cycles in χ, since χ is proper. Furthermore, we can bound the
number of half-coloured cycles D of length 2k that each edge is contained it. Indeed, given an
edge e, suppose first that e ∈ H(D). In this case, let us imagine choosing the edges of our cycle
sequentially starting at e. For each edge in H(D) our choice will be fixed by the colouring χ,
and for each edge not in H(D) we will have at most ∆ choices of which edge to choose. However,
having chosen all of the other edges, the last edge of the cycle is then fixed by our choice of e.
Hence, there are at most ∆k−1 such half-coloured cycles.

On the other hand, if e 6∈ H(D), then we have at most ∆ choices for the colour of the second
edge. This fixes both neighbours of e. Then, as before choosing edges sequentially around the
cycle, the edges in H(D) will be fixed by χ, and we will have at most ∆ choices for each edge
not in H(D). However, having chosen all of the other edges, the second to last edge of the cycle
will be fixed by our choices so far, and so again there are at most ∆k−1 such half-coloured cycles.

Hence each edge e is in at most 2∆k−1 many half-coloured cycles D. So, as before we can
choose our dependency digraph such that each event which depends on k edges is connected to
at most 2k∆ events of type I, at most k∆ events of type II in total and at most k∆`−1 events
of type III(`).

It remains to choose appropriate estimators xi for the probabilities of each event. Recall that
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� P(AB) = 1
1024∆2 for each event AB of type I;

� P(A′C) =
(
1− 1

32∆

)2k ≤ e− k
16∆ for each event A′C of type II(k);

� P(A′D) =
(

1
32∆

)k
for each event A′D of type III(k);

note that, since by assumption the girth of G is very large, k ≥ 1000∆ log ∆ and so P(A′C) ≤
∆−20 for every C.

For our choice of estimators xi let us take

� xB = x1 := 1
512∆2 for each event AB of type I;

� xC = x2 := 1
128∆2 for each event A′C of type II;

� xD = xk :=
(

1
2∆

)k
for each event A′D of type III(k).

It remains to check that the bounds in the Local Lemma hold. Firstly, for and event AB of
type I we have

x1(1− x1)4∆(1− x2)2∆
∏
k

(1− xk)4∆k−1

=
1

512∆2

(
1− 1

512∆2

)4∆(
1− 1

128∆2

)2∆∏
k

(
1−

(
1

2∆

)k)4∆k−1

≥ 1

512∆2
e−

1
64∆ e−

1
32∆ e−

8
∆

∑
k 2−k

≥ 1

512∆2
e−

1
64∆ e−

1
32∆ e−

8
∆

2−2000∆ log ∆

≥ P(AB)

since k ≥ g ≥ 2000∆ log ∆ and ∆ > 2.

For an event A′C of type II(`) we have

x2(1− x1)4`∆(1− x2)2`∆
∏
k

(1− xk)4`∆k−1

=
1

128∆2

(
1− 1

512∆2

)4`∆(
1− 1

128∆2

)2`∆∏
k

(
1−

(
1

2∆

)k)4`∆k−1

≥ 1

128∆2
e−

`
64∆ e−

`
32∆ e−

8`
∆

∑
k 2−k

≥ 1

128∆2
e−

`
21∆

≥ e−
`

16∆ e
`

100∆
1

128∆2

≥ e−
`

16∆ ∆10 1

128∆2

≥ e−
`

16∆ ≥ P(A′C),
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again since k, ` ≥ g ≥ 2000∆ log ∆ and ∆ > 2.

Finally for an event A′D of type III(`) we have

x`(1− x1)4`∆(1− x2)2`∆
∏
k

(1− xk)4`∆k−1

=

(
1

2∆

)`(
1− 1

512∆2

)4`∆(
1− 1

128∆2

)2`∆∏
k

(
1−

(
1

2∆

)k)4`∆k−1

≥
(

1

32∆

)`
24`e−

`
21∆

≥
(

1

32∆

)`
e`(4 log 2− 1

21∆
)

≥ P(A′D).

where in the third line we have used that this is the same quantity which appears in the previous
computation.
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2 Dependent random choice

Recently a technique which is based on a simple application of the alteration method has been
used in various contexts, normally to do with embedding sparse graphs. In this chapter we
give a short overview of the method, which is known as dependent random choice, and a few
examples of applications.

The basic idea can be summarised as follows: We would like to find, in a dense graph (that
is a graph with large minimum/average degree), a set of vertices U such that every small subset
of U has many common neighbours. To do this, we first pick a small set of vertices T at random
from the graph and let U ′ be the set of common neighbours of T . Intuitively, if we have some
subset of G with not many common neighbours, then it is unlikely that all the members of T
will lie in this set of common neighbours, and hence it is unlikely to be a subset of U ′. Therefore
the expected number of ‘bad’ subsets in U ′ will be small and so by removing a small number of
vertices, one from each ‘bad’ set, we should find a set U with the desired properties.

Lemma 2.1. Let G be a graph with |G| = n and let d = 2|E(G)|/n be the average degree of G.
If there exist positive integers t, a,m, r such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a,

then G contains a subset U of at least a vertices such that every subset R ⊂ U of size |R| = r
has at least m common neighbours.

Proof. For any set X ⊂ V let Γ(X) = {v ∈ V : v ∈ N(x) for all x ∈ X} be the set of
common neighbours of X. We pick a set of vertices T uniformly at random from V t, that is
with repetition. Let A = Γ(T ) be the set of common neighbours of T , and let X be the random
variable with counts the size of A. for any vertex v, the probability that v ∈ A is the probability
that every element of T is a neighbour of v and so, by linearity of expectation

E(X) =
∑
v∈V

(
|N(v)|
n

)t
= n−t

∑
v∈V
|N(v)|t.

Since the function f(x) = xt is convex on [0,∞), we can use Jensen’s inequality to say

E(X) ≥ n−t.n
(∑

v∈V |N(v)|
n

)t
= n1−t

(
2|E(G)|

n

)t
=

dt

nt−1
.

Let Y be the random variable which counts the number of subset R ⊂ A of size r with fewer
than m common neighbours. For any R ⊂ V , let Γ(R) be the set of common neighbours of R,
then the probability that R is a subset of A is just(

|Γ(R)|
n

)t
.

Therefore, if we let R = {R ⊂ G : |R| = r and |Γ(R)| < m} be the set of ‘bad’ subset of V , we
have that

E(Y ) =
∑
R∈R

P(R ⊂ A) =
∑
R∈R

(
|Γ(R)|
n

)t
<

(
n

r

)(m
n

)t
.
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Therefore we have that

E(X − Y ) ≥ dt

nt−1
−
(
n

r

)(m
n

)t
≥ a.

Therefore there exists a choice of T for which X−Y ≥ a. We delete one vertex from each subset
R of Γ(T ) of size r with fewer than m common neighbours. Let U be the remaining subset of
Γ(T ). We have that |U | = X − Y ≥ a and by construction every subset of U of size r has at
least m common neighbours.

Once we have a large set U such that every small subset has many common neighbours we
can embed bipartite graphs in it in the following way

Lemma 2.2. Let G be a graph, a,m, r be positive integers and suppose there exists a subset
U ⊂ V (G) of at least a vertices such that every subset R ⊂ U of size r has at least m common
neighbours.

If H is a bipartite graph on vertex sets A and B such that |V (H)| ≤ m, |A| ≤ a and every
vertex in B has degree at most r, then H is a subgraph of G.

Proof. We wish to find an embedding of H in G given by an injective function φ : V (H) →
V (G). We start by picking an injective function φ : A → U arbitrarily, which is possible since
|U | ≥ a ≥ |A|.

We label the vertices of B as v1, v2, . . . , vb and try to embed them in this order one at a time.
Suppose we have already defined φ(vi) for all i < j and we wish to embed vj . Let Nj ⊂ A be
the neighbourhood of vj , so |Nj | ≤ r. Since φ(Nj) is a subset of U of size at most r, there are
at least m vertices in G adjacent to all the vertices in φ(Nj). Since the total number of vertices
embedded already is less than |V (H)| ≤ m, there is at least one vertex w ∈ G which has not
been used in the embedding and is adjacent to all the vertices in φ(Nj). We set φ(vj) = w.

After we have embedded every vb it follows that φ is the desired embedding of H as a subgraph
of G.

2.1 Turán Numbers of Bipartite Graphs

The abundance of variables in Lemma 2.1 make it difficult to understand exactly what’s going
on, so let’s look at an example of an application. For a graph H and an integer n, the Turán
number ex(n,H) denotes the maximum number of edges in a graph on n vertices which does
not contain H as a subgraph. Turán’s theorem determines this number precisely for complete
graphs H = Kr, and the asymptotic behaviour for graphs of chromatic number at least 3 is
given by the well known result of Erdős and Stone

Theorem 2.3 (The Erdős-Stone Theorem). For any graph H with χ(H) ≥ 3

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)

For bipartite graphs the situation is much more complicated, and there are relatively few
non-trivial bipartite H for which the order of magnitude of ex(n,H) is known. The following
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result gives a bound for the Turán number of bipartite graphs in which one vertex class has
bounded degree.

Theorem 2.4. Let H be a bipartite graph on vertex sets A and B such that all vertices in B
have degree at most r. Then there exists some constant c = C(H) such that

ex(n,H) ≤ cn2− 1
r .

Proof. Let a = |A| and b = |B|. The idea is, given a graph G with |V (G)| = n and e(G) ≥
cn2−1/r, to use Lemma 2.1 to find a subset U ⊂ V (G) of size at least a in which all the subsets
of size r have at least a+ b common neighbours.

So let us check that the required bound holds in Lemma 2.1. We let m = a + b, t = r and

(for reasons which will become clear) let c = max
(
a1/r, e(a+b)

r

)
, note that c depends only on

H. Given a graph G with |V (G)| = n and e(G) ≥ cn2−1/r, the average degree of G satisfies
d ≥ 2cn1−1/r. Therefore

dt

nt−1
−
(
n

r

)(m
n

)t
≥ (2c)r −

(en
r

)r (a+ b

n

)r
≥ (2c)r −

(
e(a+ b)

r

)r
≥ cr

≥ a.

Therefore by Lemma 2.1 there exists a subset U of V (G) of size at least a in which all the
subsets of size r have at least a+ b common neighbours. Hence, by Lemma 2.2 H is a subgraph
of G.

These bounds are best possible in terms of their dependence on r. Indeed it is known the
the Turán number of the complete bipartite graphs Kt,r when t ≥ (r − 1)! is Ω(n2− 1

t ).

2.2 The Ramsey Number of the Cube

Definition. The Ramsey number of an arbitrary graph H is

r(H) = min{n : Every 2 colouring of Kn contains a monochromatic copy of H}.

The r-dimensional Hypercube, Qr, is a graph with vertex set {0, 1}r where two vertices are
adjacent if and only if they differ in exactly one coordinate.

An old conjecture of Burr and Erdős is that the Ramsey number of the cube is linear in
the number of vertices, that is there exists some constant C such that r(Qr) ≤ C2r. Early
bounds were much worse than this, for example Beck showed that r(Qr) ≤ 2Cr

2
. More recently

Shi obtained the first bound which was polynomial in the number of vertices, showing that
r(Qr) ≤ 2Cr+o(r) for some C ∼ 2.618. Lemma 2.1 easily implies a, slightly worse, polynomial
bound on r(Qr).

Theorem 2.5.
r(Qr) ≤ 23r
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Proof. Let n = 23r. Given any two colouring of Kn, one of the colour classes contains at least
half the edges. Let G be the graph of this colour.

Since Qr is a bipartite graph, with vertex sets of size 2r−1 and maximum degree r, we would
like to use Lemma 2.1 as before to find a set U of size at least 2r−1 such that every set of r
vertices has at least 2r common neighbours.

So let us set a = 2r−1, m = 2r and r = r. We want to choose an appropriate t such that

dt

nt−1
−
(
n

r

)(m
n

)t
≥ a,

where d is the average degree of G. Note that, since G has at least half of the edges of Kn we
have that

d ≥ 2
e(G)

n
≥ 1

2
(n− 1) ≥ 2−cn,

for an appropriately chosen c > 1. Now

dt

nt−1
−
(
n

r

)(m
n

)t
≥ 2−ctn− nr

r!

mt

nt

= 2−ctn− nr−tmt

r!

= 23r−ct − 23r2−2rt

r!
.

Setting t = 3
2r makes the second term negligible and so, to make the first term large we need

3r − c3
2r ≥ r, so for example we can take c = 4/3. All together this gives us

dt

nt−1
−
(
n

r

)(m
n

)t
≥ 2r − 1

r!
≥ 2r−1 = a.

Hence, as before, we can use Lemmas 2.1 and 2.2 to say that Qr is a subgraph of G, that is,
in any 2-colouring of Kn, the largest colour class will contain a subgraph isomorphic to Qr.
Therefore r(Qr) ≥ n = 23r.

2.3 Improvements

Lemma 2.1 tells us that in any sufficiently dense graph on n vertices we can find a large set of
vertices U such that every small subset has many common neighbours. For many applications it
would be useful to have both the size of U and the number of common neighbours to be linear
in n, for example if we wished to prove that the Ramsey number of the cube was linear in the
number of vertices using the same method.

However one can construct graphs with average degree just less than n/2 such that any
linear size subset of the vertices contains a small subset (in fact even a pair of vertices) with
o(n) common neighbours.

However using a similar proof based on alterations one can prove that in every dense graph
there exists a subset U of linear size in which almost every small subset has linearly many
common neighbours.
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Lemma 2.6. Let ε > 0, r ≤ n be positive integers, and G a graph on N > 4rε−rn vertices with
at least εN

2

2 edges. Then there is a subset U ⊂ V (G) with |U | > 2n such that number of subsets
S ⊂ U with |S| = r and less than n common neighbours is at most

1

(2r)r

(
|U |
r

)
.

How might this be useful? Well if we think about that proof of Lemma 2.2 given a set U such
that every small subset had many common neighbours, we embedded a bipartite graph H by
arbitrarily embedding the left hand side in U , and that verifying that we can always extend that
to an embedding of H, using the fact that when we want to embed a vertex v on the right hand
side, the image of it’s neighbourhood is a small set in U , and so has many common neighbours
which are all candidates for the image of v.

If we were more careful in how we embedded the left hand side of H into U at the beginning,
then if sufficiently few of the small sets in U don’t have many common neighbours, we could
try to embed the left hand side in such a way that none of these ‘bad’ small sets appear
as neighbourhoods of things in the right hand side of H. We could then extend this to an
embedding of H as before.

Obviously this will require some slightly stronger conditions on the graphs H we consider.
The specific numbers in this lemma have been chosen so that an analogy of the embedding
lemma (Lemma 2.2) carries over in this way for graphs with ∆(H) ≤ r. Using this one can
improve on the previous bound to

Theorem 2.7.
r(Qr) ≤ r22r+3 ≤ 22r+o(r).

2.4 Embedding 1-subdivisions of general graphs

Given a graph H the 1-subdivision of H is the graph obtained by subdividing each edge of H
exactly once. Note that if K is the 1-subdivision of H then K is a bipartite graph, one of whose
partition classes can be associated with the vertices of H, and the other with the edges of H,
and the degree of every vertex in the latter is two.

As we will see on the example sheet, it is relatively easy to use dependent random choice to
show that in any dense graph G, with say εn2 many edges, you can find a subdivision of the
1-subdivision of a complete graph on f(ε)

√
n many vertices. In fact, by using a slight variation

on the dependent random choice lemma, we will show that such a G will contain a 1-subdivision
of every graph with at most f(ε)n many edges.

Theorem 2.8. Let H be a graph with at most N edges and vertices, and let G be a graph with
n vertices and εn2 edges such that n ≥ 128ε−3N . Then G contains a 1-subdivision of H.

The proof will involve a slightly more involved use of the dependent random choice methods.
Given a graph H and a subdivision H ′ of H, let us call the vertices of H ′ coming from vertices of
H principle vertices and those coming from the subdivided edges subvidision vertices. A naive
strategy would be to try and find a set U of size at least N such that every pair of vertices has
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at least N common neighbours. We could then embed the principle vertices greedily in U , and
use the large shared neighbourhoods to embded the subdivision vertices.

However since N could be linearly large in n, we can’t hope to find such a set U . However,
we note that if the number of vertices is linearly large, then there must be many vertices of quite
low degree, for which we have to be much less careful when embedding. So our idea will be to
list the principle vertices from largest to smallest degree and deal with them in turn.

At the start these high degree vertices might have many neighbours already embedded, so we
will want to make sure we’re working in some set U such that every vertex in U has many common
neighbours with a very high proportion of the other vertices in U (such a high proportion that if
we take away the ‘bad’ vertices for each of the already embedded neighbours of the vertex we’re
considering, there is still a candidate to embed). By the end however, when the vertex we’re
embedding has quite low degree, we won’t need the proportion of ‘bad’ vertices for any vertex
in U to be as high to be able to guarantee that a candidate to embded exists.

So, rather than finding a set U all of whose small subsets have many common neighbours,
we will find a sequence of nested sets A0 ⊇ A1 ⊇ . . . such that Ai is sufficiently large and as i
increases the number of pairs in Ai with small common neighbourhoods will drop quickly. Let
us write c(x, y) for the codegree of x and y, the number of common neighbours.

Lemma 2.9. Let G be a graph with n ≥ 128ε−3N and let V1 be the set of vertices in G with
degree at least εn

2 . Then there is a nested sequence of subsets of vertices V1 = A0 ⊇ A1 ⊇ . . .
such that, for all i ≥ 0, |Ai+1| ≥ ε

8 |Ai| and each vertex in Ai has codgree at least N with all but

at most
(
ε
8

)i |Ai| vertices in Ai.

Proof. Suppose we have already picked A0 ⊇ A1 ⊇ . . . ⊇ Ai−1 satisfying the properties and we
wish to find Ai. Let us choose a vertex w uniformly at random from V , let A = N(w) ∩ Ai−1

and let X = |A|.

Since every vertex in A0 has degree at least εn
2 , so does every vertex in Ai−1 and so

E(X) =
∑

v∈Ai−1

|N(v)|
n

≥ ε

2
|Ai−1|.

Let Y be the random variable counting the number of pairs x, y ∈ A with c(x, y) < N . Note

that, for any pair x, y ∈ Ai−1 the probability that x, y ∈ A is c(x,y)
n . Let ci =

(
ε
8

)i
.

Let Ei−1 be the set of pairs {x, y} in Ai−1 such that c(x, y) < N , so that by assumption
|Ei| ≤ ci−1

2 |Ai−1|2. It follows that

E(Y ) <
N

n
|Ei−1| ≤

N

n

ci−1

2
|Ai−1|2.

Let us consider the random variable Z = X2 − E(X)2

2E(Y )Y −
E(X)2

2 . By the convexity of the

function x2 and Jensen’s inequality we have that E(X2) ≥ E(X)2 and hence by linearity of
expectation E(Z) ≥ 0.
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Hence there is a choice of w such that this expression if non-negative. It follows that

|X|2 ≥ E(X)2

2
≥ ε2

8
|A+ i− 1|2,

and also, since n ≥ 128ε−3N ,

Y ≤ 2E(Y )

E(X)2
X2 ≤ 2N

n

ci−1

2
|Ai−1|2

4

ε2|Ai−1|2
X2 ≤ εci−1

32
X2.

From the first inequality we have that |A| = X ≥ ε
4 |Ai−1| and the second inequality guar-

antess that the number of pairs of vertices in A with codegree less than N is at most εci−1

32 |A|
2.

If A contains a vertex that has codegree < N with more than εci−1

16 |A| many other vertices
of A, we delete it and continue this process until there are there are no vertices left which have
codegree < N with more than εci−1

16 |A| remaining vertices.

During this process we delete at most(εci−1

32
|A|2

)/εci−1

16
|A| = |A|

2

many vertices and hence if we let Ai be the remaining set of vertices then |Ai| ≥ |A|2 ≥
ε
8 |Ai−1|,

and every vertex in Ai has codegree at least N with all but at most

εci−1

16
|A| ≤ ε

8
ci−1|Ai| = ci|Ai|

vertices of Ai. Hence the claim follows by induction.

Theorem 2.10. Let G be a graph with n ≥ 128ε−3N vertices and εn2 edges and let H be a
bipartite graph on partition classes A,B with at most N vertices and edges such that every vertex
in B has degree 2. Then G contains H as a subgraph.

Proof. If we let V1 be the set of vertices in G with degree at least εn
2 then |V1| > ε

1
2n. Indeed,

the number of edges of G not meeting a vertex in V1 is at most n εn2 < εn2

2 and hence the number

of edges with both vertices in V1 is at least εn2

2 , but also at most
(|V1|

2

)
, from which the claim

follows.

By the previous lemma we can find nested subsets V1 = A0 ⊇ A1 ⊇ . . . such that, for all
i ≥ 0, |Ai+1| ≥ ε

8 |Ai| and each vertex in Ai has codgree at least N with all but at most
(
ε
8

)i |Ai|
vertices in Ai.

Let H ′ be the graph with vertex set A where two vertices in A are adjacent if they have a
common neighbour in B in H. If we can find an embedding φ : A→ V1 such that for every edge
(a, b) of H ′, φ(a) and φ(b) have codegree at least N in G, then we can clearly extend φ to an
embedding of H greedily.

So, let us enumerate A = {a1, . . . , a|A|} such that dH′(a1) ≥ dH′(a2) ≥ . . . ≥ dH′(a|A|). Since

e(H ′) ≤ N , it follows that the degree of each ai is at most 2N
i . We will construct our embedding

φ in order, starting at a1. Let us define as above cj =
(
ε
8

)j
. We will ensure that the vertex ai is
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embedded in Aj , where j is the least positive integer such that cj ≤ i
4N . Note that, in this case

cj−1 ≥ i
4N .

Since n ≥ 128ε−3N ,

|Aj | ≥ cj |A0| ≥ cjε
1
2n

≥ ε

8
cj−1ε

1
2n

≥ ε

8

i

4N
ε

1
2n

≥ 2i

Suppose that we have already embedded all the vertices ak with k < i and we wish to embed
ai. Let N−(ai) be the set of vertices ak with k < i which are adjacent to ai in H ′. Each vertex
in Aj has codegree at least N with all but at most cj |Aj | ≤ i

4N |Aj | other vertices in Aj where
j is chosen as above for i.

Since ai has degree at most 2N
i in H ′, at least |Aj | − 2N

i
i

4N |Aj | =
|Aj |

2 vertices of Aj have

codegree at least N with every vertex in φ (N−(ai)). Since in particular
|Aj |

2 ≥ i, there is a
vertex in Aj \φ({a1, . . . , ai−1) that has codegree at least N with every vertex in φ (N−(ai)). We
let this vertex be φ(ai) and continue. By induction we can find the desired embedding, finishing
the proof.
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3 Random Subgraphs

Recently interest has been shown in the following model of a random subgraph: Suppose G is
an arbitary graph, with minimum degree at least k, then for p ∈ [0, 1] we define Gp to be the
random subgraph of G obtained by including each each of G independently and with probability
p. When G = Kk+1, the complete graph on k+ 1 vertices, this gives the model G(k+ 1, p). We
are interested in the question of which properties of G(k + 1, p) also hold in Gp, when p = p(k)
is a function of the minimum degree of G.

For certain properties there can clearly be no transference, for example connectedness, since
Gp itself might be disconnected. However, sometimes ‘local’ versions of these properties are
more natural to consider. For example, in G(k + 1, p) being connected is equivalent to have a
component of size at least k + 1, and it is perhaps possible to find a p(k) that guarantees this
in Gp.

3.1 Large components, paths and cycles

For example, let’s consider the behaviour of the random graph in the supercritical phase. We
know that as p goes from 1−ε

k to 1+ε
k , G(k, p) goes from having only small components to having

a giant component, whose size in linear in k. If we take G to be a union of many disjoint
copies of Kk+1, then we see that we can’t hope to ask that Gp has only small components in
the subcritical phase, and similarly we can’t ask for uniqueness of any large components in the
supercritical phase. However, we can still ask if it’s true that the size of the largest component
is at least linear in k in the supercritical regime. Indeed, it is easy to see that actually most of
the proofs for G(k, p) will work in this setting also.

We will follow the depth first search proof, both for ease of exposition, and also since with
only a little more work we can actually prove a slightly stronger result when ε(k)→ 0 sufficiently
slowly.

Theorem 3.1. Let p = 1+ε
k where εk = ω

((
log k
k

) 1
3

)
, let G be a graph with δ(G) ≥ k. Then

with high probability Gp contains a connected component with at least εk
2 vertices.

For the proof we will need the following simple consequences of the Chernoff bound.

Lemma 3.2. Let X1, . . . , XN be a sequence of N = εk2

2 many i.i.d Ber(p) random variables
with p = 1+ε

k then with high probability

(a)
∑k

7
4

i=1Xi ≤ k
5
6 ;

(b) For every k
7
4 ≤ t ≤ N ∣∣∣∣∣

t∑
i=1

Xi − (1 + ε)
t

k

∣∣∣∣∣ ≤ k 2
3 .
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Proof. The former is clear, since E
(∑n

7
4

i=1Xi

)
= (1 + ε)k

3
4 = o(k

5
6 ) and for the latter we have,

for every k
7
4 ≤ t ≤ N the probability that∣∣∣∣∣

t∑
i=1

Xi − (1 + ε)
t

k

∣∣∣∣∣ ≤ k 2
3 .

is the probability that Bin(t, p) is more that k
2
3 from it’s expectation tp, which is at most

exp

(
− k

4
3

2(tp+ k
2
3
3

)

)
.

Since k
3
4 ≤ tp ≤ k this is at most exp

(
−k

1
3

4

)
and hence by a union bound with high

probability the inequality holds for all k
7
4 ≤ t ≤ N .

Proof of Theorem 3.1. We run the depth first search algorithm on Gp starting at an arbitrary
root. Using the principle of deferred decisions we can think of our edge-queries as coming from
a sequence of i.i.d Ber(p) random variables X1, X2, . . .. By Lemma 3.2 we can assume that
properties (a) and (b) hold with high probability.

Our claim is that after that first N = εk2

2 many queries in the DFS algorithm we are in

the midst of revealing a component whose size is at least εk
2 . Recall that the depth first search

algorithm keeps track of three sets of vertices the stack A of active vertices, a set W of visited
vertices and a set U of unvisited vertices, and that at each point during the algorithm we have
queried every edge between U and W .

We claim that at time N the number of visisted vertives |W | is at most k
3 . Indeed, if not,

there was some point t ≤ N when |W | = k
3 , and at that point

|A| ≤ 1 +

t∑
i=1

Xi

If t ≤ k
7
4 then by (b) |A| ≤ 1 + k

5
6 ≤ k

3 and if t ≥ k
7
4 then by (a)

|A| ≤ 1 + (1 + ε)
t

k
+ k

2
3 ≤ k

3
.

It then follows that |U | ≥ k
3 (since A ∪ U ∪ W = V (G) and clearly |V (G)| ≥ δ(G) = k).

Furthermore, since each vertex in W has degree at least k, and |A∪W | ≤ 2k
3 it follows that each

vertex in W has at least k
3 neighbours in U . However, then at this point we’ve already queried

at least k2

9 > N many edges between U and W , a contradiction.

Hence, at time N , |W | < k
3 . If |A| > k

3 then we’re done, since A always forms a path, and so
we may assume that U is non-empty, and so the algorithm is still running. Hence, in particular,
each positive query so far resulted in a vertex moving from U to A.

It follows that for every k
7
4 ≤ t ≤ N

|A ∪W | ≥
t∑
i=1

Xi ≥ (1 + ε)
t

k
− k

2
3 .
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If at any point during this time period A is empty, W is large, and so the algorithm has already
queried all the edges between W and U . Since every vertex in W has degree at least k, it has at
least k − |W | many neighbours in U and so we’ve already queried at least |W |(k − |W |) many
edges between U and W .

However, since (1 + ε) tk − k
2
3 ≤ |W | ≤ k

3 , the parabola |W |(k − |W |) will take its minmum
at the lower end of this range, and so we must have that

t ≥ |W |(k − |W |) ≥
(

(1 + ε)
t

k
− k

2
3

)(
k − (1 + ε)

t

k
+ k

2
3

)
≥ (1 + ε)t− (1 + ε)2 t

2

k2
− 2k

5
3

≥ (1 + ε)
(

1− (1 + ε)
ε

2

)
t− 2k

5
3

= (1 + ε)

(
1− ε

2
− ε2

2

)
t− 2k

5
3

> t,

since t ≥ k
7
4 , which is a contradiction. It follows that A is never empty for k

7
4 ≤ t ≤ N and

hence every positive query results in a vertex in the same component of Gp. By our assumptions
on the sequence X1, X2, . . . the number of positive queries in this range is at least

N∑
i=k

7
4

Xi ≥
N∑
i=1

Xi −
k

7
4∑

i=1

Xi

≥ (1 + ε)
εk

2
− (1 + ε)k

3
4 − 2k

2
3

≥ εk

2
.

As we saw before, a very similar proof will show that there is even a path of linear length
in G(k, p) with high probability, and the same proof will go through almost verbatim for the
random subgraph model. Furthermore, as ε→∞ these proofs also show that the length of the
largest component/longest path will tend upwards to (1− o(1))k.

In G(k, p) it is then relatively easy to find a long cycle, once you have a long path, using
sprinkling. However, this is not longer possible in Gp, indeed it could even be that the girth of
G is much larger than k, so knowing that we have a path of length linear in k doesn’t mean that
we must have many edges in order to sprinkle.

Using similar ideas as above, Krivelevich, Lee and Sudakov showed that you could at least
find a cycle of length at least (1

2 − o(1))k, and then using some complicated arguments about
the possible structure of the graph G, used this to show that Gp will indeed contain a cycle of
length at least (1− o(1))k when p = ω

(
1
k

)
.

However, Riordan managed to give a much simpler proof, which we present below.

Theorem 3.3. Let G be a graph with δ(G) ≥ k and let p = ω
(

1
k

)
. Then with high probability

Gp contains a cycle of length at least (1− o(1))k.
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Proof. We explore the graph, as in the previous proof, using the DFS process. Let U,W and
A be as before, and let us write T for the forest that we produce via this search process. We
consider T as being a rooted forest, where each component is rooted at the first vertex of the
component that was added to A. Let us denote by R the set of edges of G that are not queried
in Gp during the process.

For any v in T there is a unique path from v to the root of it’s component, which we will
imagine to be drawn vertically. Let us write A(v) for the set of ancestors of v in T , that is,
the set of vertices on this path. We write D(v) for the set of descendants of v in the tree,
those w such that v ∈ A(w). Given an integer t we will write At(v) and Dt(v) for the set of
ancestors/descendants of t at distance exactly t, and A≤t(v) and D≤t(v) for those at distance
at most t. The depth of v is its distance from the root of its component and the height of v is
the max{t : Dt(v) 6= ∅}.

Lemma 3.4. Ever edge e ∈ R joins two vertices on some vertical path in T .

Proof of Lemma. Let e = (u, v), and suppose that u is placed into W before v. When u is placed
into W , v cannot be in U , else we would have queried the edge (u, v), and so v must be in A.
Hence, at this point both v and u are on the stack, and so there is a vertical path from v to
u.

Lemma 3.5. With high probability, at most 2n
p = o(kn) edges are queried during the DFS

process.

Proof of Lemma. At the end of the DFS process we have built a spanning forest T of Gp, which
thus has at most n edges. Each time an edge is queried it succeeds with probability p, and so
there are at most n successful queries during the process. However, the probability that more
than 2n

p queries made, but fewer than n successful queries is o(1). It follows that with high

probability there are at most 2n
p edges queried.

From this point on let us fix some small constant ε > 0, where we will assume ε ≤ 1
10 . We

say that a vertex v is full if it is incident with at least (1− ε)k edges in R.

Lemma 3.6. With high probability, all but o(n) vertices of T are full.

Proof of Lemma. Since δ(G) ≥ k, each v ∈ V (T ) which is not full is incident with at least εk
many queried edges. If there are at least δn many such vertices for any δ > 0, then there are at
least δε

2 kn many queried edges. However, with high probability this doesn’t happen, by Lemma
3.5.

Let us call a vertex rich if |D(v)| ≥ εk and poor otherwise.

Lemma 3.7. Suppose that T contains o(n) poor vertices. Then for any constant C > 0, all but
o(n) vertices of T are at height at least Ck.

Proof of Lemma. For each rich vertex v, let P (v) be a set of exactly εk (ignoring floor/ceiling
signs for ease of presentation) descendants of v, obtained by choosing vertices in D(v) at maximal
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distance from v. Hence, for every w ∈ P (v) we have D(w) ⊆ P (v), and so in particular
D(w) < εk, and so w is poor.

Consider the set S1 of ordered pairs (v, w) where v is rich and w ∈ P (v). By assumption
there are (1− o(1)n many rich vertices, and each have |P (v)| = εk and so |S1| ≥ (1− o(1))εkn.
However, for any vertex w we have that |A≤i(w)| ≤ i, since every vertex has a unique ancestor
at each fixed distance less than it’s depth. Thus, if (v, w) ∈ S1 then w is poor, and v ∈ A(w).
Hence, since there are only o(n) many poor vertices, the number of pairs (v, w) ∈ S1 with
d(v, w) ≤ Ck is o(Ckn).

It follows that, S′1 = {(v, w) ∈ S1 : d(v, w) > Ck} has size at least (1− o(1))εkn. Since each
vertex v is the first vertex in at most εk many pairs, it follows that there are at least (1−o(1))n
vertices v appearing in some pair (v, w) ∈ S′1, and so in particular each of these vertices is at
height at least Ck.

Let us call a vertex v light if |D≤(1−5ε)k(v)| ≤ (1− 4ε)k, and heavy otherwise. Let H be the
set of heavy vertices in T .

Lemma 3.8. Suppose that T contains o(n) poor vertices, and let X ⊆ V (T ) have size |X| =
o(n). Then, for k large enough, T contains a vertical path P of length at least ε−2k containing
at most ε2k vertices in X ∪H.

Proof of Lemma. Let S2 be the set of pairs (u, v) where u ∈ A(v) and 0 < d(u, v) < (1− 5ε)k.
Since each v has at most one ancestor at each distance, |S2| ≤ (1− 5ε)kn. On the other hand,
by Lemma 3.7, all but o(n) vertices u are at height at least k, and so appear in at least (1−5ε)k
pairs (u, v) ∈ S2. It follows that only o(n) many vertices u can be in significantly more pairs in
S2, for example in more than (1−4ε)k many, However, since every v ∈ D≤(1−5ε)k(u) contributes
to a pair (u, v) ∈ S2, it follows that H = o(n).

Let S3 be the set of pairs (u, v) where v ∈ X ∪H, u is an ancestor of v and d(u, v) ≤ ε−2k.
Since each v can appear in at most ε−2k pairs in S3, we see that |S3| ≤ ε−2k|X ∪H| = o(kn).
Hence, by double counting, only o(n) vertices u appear in more than ε2k pairs (u, v) ∈ S3.

However, by Lemma 3.7, all but o(n) vertices are at height at least ε−2k. So there is some
vertex u at height at least ε−2k which appears in at most ε2k many pairs (u, v) ∈ S3. Let
P be the vertical path from u to some v ∈ Dε−2k(u). Then P has length ε−2k and every
v ∈ (X ∪H) ∩ P appears in some pair (u, v) ∈ S3, and so there are at most ε2k many such v.
Hence P satisfies the conclusion of the lemma.

We are finally ready to conclude the proof of the theorem. Recall that we explored Gp via a
DFS process and obtained a tree T and a set R of unqueried edges, and with high probability
we may assume that these satisfy the conclusions of the previous lemmas. Note that the edges
of R are still present in Gp independently with probability p.

Suppose that there is some vertex v such that

|{u : (u, v) ∈ R, d(u, v) ≥ (1− 5ε)k}| ≥ εk. (3.1)

Then we can expose the edges (u, v) with d(u, v) ≥ (1 − 5ε)k in Gp, each of which is present
with probability p. However, since εkp → ∞, it follows that with high probability one of the
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exposures is successful, resulting in a cycle of length at least (1 − ε)k. Hence we may assume
that (3.1) fails for every vertex v. We note that in particular this implies that every full vertex
is rich. Indeed, suppose that v is full but poor. Then v is adjacent to at least (1 − ε)k many
edges in R, each of which goes between two vertices on a vertical path in T . However, since v
has at most εk many descendants, at least (1−2ε)k of these edges go to vertices u ∈ A(v). Since
v has at most one ancestor at each distance, it follows that v satisfies (3.1), a contradiction.

Hence, since every full vertex is rich, and at most o(n) vertices are not full, at most o(n)
vertices in T are poor. Let us apply Lemma 3.8 with X being the set of non-full vertices. We get
a path P such that there are at most ε2k vertices in P which are in X∪H, that is, which are light
or nor full. Let Z be the set of vertices in P which are full and light, so that |V (P ) \ Z| ≤ ε2k.
Then, for any v ∈ Z, since v is full there are at least (1− ε)k vertices u ∈ A(v)∪D(v) such that
(u, v) ∈ R. Since v does not satisfy (3.1), at least (1− 2ε)k of these vertices are at distance at
most (1− 5ε)k to v. Furthermore, since v is light, it has few descendants and so at least 2εk of
these vertices are in A(v).

Hence, since each vertex has at most one ancestor at each distance, we can find some set R(v)
of at least εk many vertices u ∈ A(v) such that (u, v) ∈ R and εk ≤ d(u, v) ≤ (1 − 5ε)k ≤ k.
We will use these sets R(v) to find a long cycle.

Let us think of P as being oriented upwards towards the root, and let v0 be the lowest vertex
in Z ⊆ P . Since |R(v0)| ≥ εk and εkp → ∞, with high probability there is some edge (u0, v0)
in Gp with u0 ∈ R(v0). Let v1 be the first vertex below u0 on P with v1 ∈ Z.

Note that d(u0, v0) ≥ εk and d(u0, v1) ≤ 1 + |V (P ) \ Z| ≤ 2ε2k, and so v1 is above v0 on P .
We repeat the same process from v1: find a u1 ∈ R(v1) with (u1, v1) ∈ Gp and let v2 be the first
vertex below u1 on P . Since ε−1 is a fixed constant, we can continue doing this to find vertices
{vi, ui : 1 ≤ i ≤ 2ε−1} such that, in the order � on P , v0 � v1 � u0 � v2 � u1 � v3 . . . with the
overlapping chords (ui, vi) ∈ Gp for each i. Note that, since d(ui, vi) ≤ k, we remain within P
since P has length at least ε−2k.

However it is relatively simple to use these chords, together with P , to form a cycles of length
at least (1− 2ε−12ε2)k = (1− 4ε)k.

We note that Krivelevich and Samotij showed, with different methods, but still using the
DFS process, that if p = 1+ε

k then whp Gp will contain a cycle whose length is linear in k.

3.2 Planarity

Similarly we could consider the planarity of a random subgraph. Recall that in G(n, p) there is
a sharp threshold for planarity at 1

n ; if p = d
n for d < 1 then with high probability G(n, p) is

planar and if p = d
n for d > 1 then with high probability G(n, p) is non-planar.

Again, clearly we cannot hope for the latter to also hold in an arbitrary random subgraph.
However if p is large enough then with high probability Gp will be non-planar; indeed by consid-
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ering the average degree if p > C
k for a large constant C then clearly Gp is with high probability

non-planar. The fact that this is true for any d > 1 was first shown by Frieze and Krivelevich.
We will give a slightly simplified version of their proof, due to Erde Kang and Krivelevich.

A rough sketch of the strategy is as follows. Let p = 1+ε
k and take p1 =

1+ ε
2

k and p2 =
p−p1

1−p1
≥ ε

2k . We want to find a connected part of Gp1 which is relatively ‘dense’ in G, so that
after sprinkling onto these edges with probability p2 we will have with high probability a minor
with large average degree.

The following lemma makes this more precise.

Lemma 3.9. Let n, k be integers with n �
√
k and K, c1, c2 > 0 be constants. Suppose T is a

tree on n vertices with maximum degree at most K − 1, F is a set of c1kn many edges on the
vertex set V (T ), and p = c2

k . Then whp T ∪ Fp is non-planar.

Proof. We first start by splitting T up into connected parts of size around
√
k. As long as n is

sufficiently large compared to
√
k, this is relatively easy to do in a greedy fashion. Indeed, as

long at |T | ≥
√
k and ∆(T ) ≤ K − 1 there must be some vertex v such that the subtree Tv of T

rooted at v satisfies
√
k ≤ |Tv| ≤ (K − 1)

√
k, which can be seen by picking v to be the highest

vertex with |Tv| ≥
√
k.

It follows that we can find connected disjoint vertex sets A1 . . . , Ar ⊆ V (T ) such that

� V (T ) =
⋃r
i=1Ai;

� T [Ai] is connected for each i; and

�

√
k ≤ |Ai| ≤ K

√
k for each i.

Indeed, we keep greedily choosing such a v and letting Ai = Tv until the remaining tree has size
≤
√
k, and we add the rest to the last Ai.

Note that, since V =
⋃r
i=1Ai and |Ai| ≥

√
k, r ≤ k−

1
2n. Let F ′ be the set of edges in F

which are not contained in any Ai. Then, since each Ai contains at most
(|Ai|

2

)
≤ K2

2 k edges
inside it and |F | ≥ c1kn, it follows that for large k,

|F ′| ≥ |F | − rK
2

2
k ≥ c1kn−

K2

2

√
kn ≥ c1

2
kn.

Hence, on average each Ai meets at least 2|F ′|
r ≥ c1k

3
2 many edges in F ′.

We recursively delete sets Ai, and the edges in F ′ incident to them, which meet at most c1
4 k

3
2

edges remaining in F ′; we must eventually stop this process before exhausting the Ai, since
r ≤ k−

1
2n (i.e. there are at most k−

1
2n many Ai) and

c1

4
k

3
2k−

1
2n =

c1

4
kn ≤ |F

′|
2
.

Hence there is some subfamily, without loss of generality, {A1, . . . , A`} of the Ai, and some

subset F ′′ ⊆ F ′ of edges which lie between Ai and Aj with i, j ∈ [`] such that at least c1
4 k

3
2

edges of F ′′ meet each Ai.
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Note that 0 ≤ eF ′′(Ai, Aj) ≤ K2k for each pair i, j ∈ [`]. For each pair i, j ∈ [`] such that
eF ′′(Ai, Aj) > k let us delete eF ′′(Ai, Aj) − k many edges in F ′′ which lie between Ai and Aj ,
and call the resulting set of edges F̂ . Then 0 ≤ eF̂ (Ai, Aj) ≤ k for each i, j ∈ [`] and furthermore

each Ai still meets at least c1
4K2k

3
2 many edges of F̂ . Indeed, we deleted at most a (1 − 1

K2 )
proportion of the edges in F ′′ between each pair Ai and Aj , and hence at least a 1

K2 proportion
of the edges meeting each Ai remains.

In particular we have ∑
i,j∈[`]

eF̂ (Ai, Aj) ≥ `
c1

2K2
k

3
2 . (3.2)

Let H be an auxilliary (random) graph on [`] such that i ∼ j if and only if there is an edge
between Ai and Aj in F̂p. The number of edges between Ai and Aj in F̂p is distributed as
Bin(eF̂ (Ai, Aj), p). Note that if np < 1/2, then P (Bin(n, p) 6= 0) = 1 − (1 − p)n ≥ np

2 . Since
eF̂ (Ai, Aj) ≤ k and p = c2

k , and without loss of generality we may assume that c2 <
1
2 , it follows

that

P(i ∼ j) ≥
c2eF̂ (Ai, Aj)

2k
. (3.3)

By (3.2) and (3.3), we have

E(e(H)) =
1

2

∑
i,j∈[`]

P(i ∼ j) ≥ 1

2

∑
i,j∈[`]

c2eF̂ (Ai, Aj)

2k
≥ 1

4k
`
c1c2

2K2
k

3
2 =

c1c2

8K2
`k

1
2 .

And so we expect H to have average degree Ω
(
k

1
2

)
. It remains to show that e(H) is well

concentrated about its mean.

However, e(H) is the sum of independent Bernoulli random variables, and so Var(e(H)) ≤
E(e(H)). Hence, by Chebyshev’s inequality

P
(
e(H) ≤ E(e(H))

2

)
≤ P

(
|e(H)− E(e(H))| ≥ E(e(H))

2

)
≤ 4Var(e(H))

E(e(H))2
≤ 4

E(e(H))
= o(1).

Hence, with high probability e(H) = Ω
(
`k

1
2

)
and so H has average degree ω(1). It follows

that H is non-planar. Finally, observe that by contracting each Ai the graph H becomes a
minor of T ∪ Fp, and so the result follows.

We note that the conclusion of this lemma is much stronger than non-planarity, we found a
minor with average degree Ω(

√
k).

In order to find such a tree we will start a (restricted) breadth-first search process in the
graph Gp1 . If every vertex always has ≈ k neighbours (in G) outside the current tree, then at at
each stage the frontier (the active vertices in tree) should grow in size by at least (1 + ε), and
so always be at least some constant fraction of the whole tree.

However, if a large proportion of the vertices in the frontier do not have ≈ k neighbours
outside the current tree, then they must all have Θ(k) many neighbours inside the tree. This
would then give us sufficiently many edges in the tree to apply Lemma 3.9.
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Unfortunately there are a few technical details with following this strategy. Firstly, we need
to restrict our breath-first search process so that the tree we build has bounded maximum degree.
Secondly, we need to make sure that during the process of exposing the edges incident to the
frontier we don’t add too many neighbours of the frontier to the tree, since then our sketch
above wouldn’t work. Finally, in order to make sure this all happens with high probability we
need to first grow the tree ‘by hand’ for the first few stages, so that the tree is already large
when we start, this will necessitate throwing away some failed attempts, whose vertices we will
have to keep track of.

So, firstly let us give a simple bound on the expectation of a restricted binomial random
variable which will be useful later.

Lemma 3.10. Let X ∼ Bin(n, p) be a binomial random variable with 2enp < K for some
constant K > 0. If Y = min{X,K}, then

E(Y ) ≥ np−K2−K .

Proof. For every t ≤ K we have that P(Y = t) ≥ P(X = t). Hence, by standard estimates

E(X)− E(Y ) ≤
∑
t>K

t

(
n

t

)
pt(1− p)n−t

≤
∑
t>K

t
(enp

t

)t
≤
∑
t>K

enp
(enp

t

)t−1

≤
∑
t>K

K

2

(enp
K

)t−1

≤ K

2

(enp
K

)K−1

≤ K2−K ,

since enp
K < 1

2 .

Theorem 3.11. Let ε be a positive constant, G be a graph with δ(G) ≥ k, and p = 1+ε
k . Then

whp Gp is non-planar.

Proof. Our plan will be to sprinkle with p1 =
1+ ε

2
k and p2 = p−p1

1−p1
≥ ε

2k .

Initial Phase : We first run an initial phase in which we build a partial binary tree T0 of size
log log log k =: N in Gp1 . By a partial binary tree we mean a tree in which all vertices have
degree three or one, and in which there is a leaf r such that there is some integer L such that
every other leaf is at distance L or L− 1 from r.

We will do so via a sequence of trials. In a general stage we will have a set of discarded
vertices X which will have size o (log k), and a partial binary tree T ′ of size ≤ N , such that so
far we have only exposed edges in Gp1 which meet either X or a non-leaf vertex of T ′.
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We choose a leaf v ∈ V (T ′) of minimal distance to the root and expose the edges between v
and V \ (X ∪ V (T ′)) in Gp1 . If v has at least two neighbours, we choose two of them arbitrarily
(or one if v is the root) and add them to T ′ as children of v. Otherwise we say that the trial
fails and we add V (T ′) to X and choose a new root v arbitrarily from V \X and set T ′ = v. If
at any point |T ′| = N we set T0 := T ′ and we finish the initial phase.

Since each v has at least k − |X ∪ V (T ′)| ≥ (1 − ε)k many neighbours in V \ (X ∪ V (T ′)),
the probability that a trial fails is at most

P (Bin ((1− ε)k, p1) < 2) = (1− p1)(1−ε)k + (1− ε)kp1(1− p1)(1−ε)k−1

≤
(

1− p1 + (1− ε)
(

1 +
ε

2

))
exp

(
−(1 +

ε

2
)(1− ε) + p1

)
≤ 2eε−1 := 1− γ < 1.

Hence, each time we choose a new root the probability that we build a suitable T0 before a
trial fails is at least

γN .

Therefore, whp we build such a tree before we’ve chosen γ−NN new roots. Since we only ever
discard at most N vertices, during this process the number of discarded vertices is at most

γ−NN2 = (log log k)− log γ (log log log k)2 = o (log k) .

Let S0 be the set of leaves of T0 and note that, since T0 is a partial binary tree as defined
above, |S0| ≥ 1

4 |T0|. Furthermore, during this process we have only exposed edges which are
incident to either a vertex in X or a vertex in V (T0) \ S0. In particular, we have not exposed
any edges between S0 and V \ (X ∪ V (T0)).

Tree Branching Phase : Suppose then that in a general step we have a tree Tt together with
a set St of leaves of Tt, called the frontier of Tt, with the following properties:

(a) |St| ≥ ε
16 |Tt|;

(b) No edges from St to V \ (X ∪ V (Tt)) have been exposed in Gp1 ;

(c) The maximum degree in T is at most K + 1,

where

K := 4 log
1

ε

is a large constant. Note that T0 and S0 satisfy these three properties.

Let 0 < δ � ε and let us consider the set

V0 = {s ∈ St : eG(s, Tt) ≥ δk} .

If |V0| ≥ δ|St|, then G[V (Tt)] contains a set F of at least δ2

2 |St|k ≥
δ2ε
32 |Tt|k many edges. In

particular, note that this implies that |Tt| = Ω(k).
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Since Tt has bounded degree, by Lemma 3.9 when we sprinkle onto the edges of F with
probability p2, whp we find a non-planar subgraph of Gp.

So, we may assume that |V0| ≤ δ|St|. Let V1 = St \ V0. Since |X| = o(k), every vertex s ∈ V1

has degree at least (1−2δ)k to V \(X∪V (Tt)). Let us arbitrarily order the set V1 = {s1, . . . , sr}.

We will build the new frontier St+1 by exposing the neighbourhood of each si in turn. At the
start of the process each si has at least (1 − 2δ)k many possible neighbours, however, as St+1

grows, it may be that some si have a significant fraction of their neighbours inside St+1.

Let us initially set St+1(0) = ∅ and B(0) = ∅. We will show that whp we can either find a
large complete minor, or construct, for each 1 ≤ j ≤ r, sets St+1(j) and B(j), and a forest F (j),
such that:

1. B(j) ⊆ {si : i ∈ [j]} and |B(j)| < δ|St|;

2. Each s ∈ B(j) has eG(s, St+1(j)) ≥ δk;

3. There is a forest F (j) of maximum degree K in Gp1 which joins each v ∈ St+1(j) to some
s ∈ {si : i ∈ [j]}.

Clearly this is satisfied with j = 0. Suppose we have constructed appropriate St+1(j − 1) and
B(j − 1).

If dG(sj , St+1(j − 1)) ≥ δk then we let B(j) = B(j − 1) ∪ sj , St+1(j) = St+1(j − 1) and
F (j) = F (j − 1). If |B(j)| ≥ δ|St| then we can apply Lemma 3.9 to the edges spanned by
V (Tt ∪ F (j)), those include the edges in EG(B(j), St+1(j)).

Then, |Tt ∪ F (j)| ≤ |Tt|+K|St| = Θ(|Tt|) and∣∣E(G[V (Tt ∪ F (j))]
)∣∣ ≥ eG(B(j), St+1(j)) ≥ δ2|St|k = Θ(|Tt|k).

Hence, by Lemma 3.9 after sprinkling onto G[V (Tt ∪ F (j))] with probability p2 whp we have a

complete minor of order Ω
(√

k
log k

)
.

Therefore, we may assume that |B(j)| < δ|St| and so conditions (1)–(3) are satisfied by B(j),
St+1(j) and F (j).

So, we may assume that dG(sj , St+1(j−1)) ≤ δk, and hence sj has at least (1−3δ)k neighbours
in V \(V (Tt)∪St+1(j−1)). We expose the neighbourhood N(j) of sj in V \(V (Tt)∪St+1(j−1))
in Gp1 . Let us choose an arbitrary subset N ′(j) ⊆ N(j) of size min{N(j),K} and let F ′(j) be
the set of edges from sj to N ′(j). We set B(j) = B(j − 1), St+1(j) = St+1(j − 1) ∪N ′(j) and
F (j) = F (j − 1) ∪ F ′(j). It is clear that these now satisfy (1)–(3).

Hence we may assume that we have constructed St+1(r), B(r), and F (r). Let us set St+1 =
St+1(r) and Tt+1 = Tt ∪ F (r). Note that St+1 is the frontier of Tt+1, and so property (b) is
satisfied. Furthermore, since F (r) has maximum degree K, so is property (c).

Finally, we note that, since |B(r)| < δ|St|, we exposed the neighbourhood N(j) of at least
(1− 2δ)|St| of the vertices in St. Furthermore, the size of the union of their neighbourhoods is
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stochastically dominated by a sum of restricted binomial random variables. More precisely, if
we let

Y ∼ min {Bin ((1− 3δ)k, p1) ,K} ,
then the sizes of the neighbourhoods (N ′(i) : i 6∈ B(r)) are stochastically dominated by a se-
quence of r − |B(r)| many mutually independent copies of Y , (Yi : i 6∈ B(r)). Hence, if we let
Z =

∑
i 6∈B(r) Yi then |St+1| is stochastically dominated by Z.

Note that
1 +

ε

3
≤ (1− 3δ)kp1 = (1− 3δ)

(
1 +

ε

2

)
≤ 2.

Hence, since K = 4 log 1
ε ≥ 2e(1− 3δ)kp1, Lemma 3.10 implies that

E(Y ) ≥
(

1 +
ε

3

)
−K2−K

≥
(

1 +
ε

3

)
−Ke−

K
2

=
(

1 +
ε

3

)
− 4 log

(
1

ε

)
ε2

≥ 1 +
ε

4
,

as long as ε is sufficiently small.

Since r − |B(r)| ≥ (1 − 2δ)|St|, it follows that E(Z) ≥ (1 − 2δ)|St|E(Y ) ≥ (1 + ε
5)|St|. We

can then bound the probability that Z deviates from it’s mean using for example the Azuma-
Hoeffding inequality.

Indeed, since Z =
∑

i 6∈B(r) Yi, we can consider the exposure martingale of Z with respect to
the sequence (Yi : i 6∈ B(r)). Since the Yi are independent, and take values in [0,K] it follows
that this martingale satisfies the bounded differences condition with this parameter K and hence
an application of the Azuma-Hoeffding inequality gives

P
(
|St+1| <

(
1 +

ε

8

)
|St|
)
≤ P

(
Z <

(
1 +

ε

8

)
|St|
)

≤ P
(
|Z − E(Z)| > ε

20
|St|
)

≤ 2exp

(
− ε2|St|2

400(r − |B(r)|)K2

)
= e−Ω(|St|), (3.4)

since r ≤ |St|. It follows that with probability at least 1− e−Ω(|St|), |St+1| ≥ (1 + ε
8)|St|, and it

is then a simple check that |St+1| ≥ ε
16 |Tt+1| and hence property (a) is also satisfied.

Hence, we have shown that in the tth step we can either find a non-planar subgraph, or with
probability at least 1− e−Ω(|St|) we can continue our tree growth. However, since G is finite the
tree growth cannot continue forever, and so, unless the tree growth fails at some step, we must
eventually find a non-planar subgraph.

Recall that the probability of failure is o(1) in the initial phase, and by (3.4) the probability
that the tree growth fails at some step is at most∑

t

e−Ω(|St|) = o(1),
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since |S0| ≥ 1
4 log log log k and |St| ≥ (1 + ε

8)|St−1|. Hence the total probability of failure is o(1),
and so whp Gp is non-planar.

As with the comment after Lemma 3.9 we actually get the stronger conclusion that with high
probability Gp contains a minor with average degree

√
k. It follows from a well-known result of

Kostochka, and Thomason, that with high probability Gp contains a complete minor of order

Ω
( √

k
log k

)
which is almost optimal (up to the polylogarithmic factor).
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4 Entropy Methods

4.1 Basic Results

Given a discrete random variable X let us denote by p(x) := P(X = x) for each x in the range
of X. We define the entropy of the random variable X to be

H(X) =
∑
x

p(x) log

(
1

p(x)

)
.

Note that this quantity is always positive.

We want to think of entropy, at least heuristically, as a measure of the expected amount
of ‘surprise’ we have upon discovering the value of X. We then have the following heuristic
argument for why H(X) should be defined as above.

If we have an event A, such as the event X = x for some x, the amount of ‘surprise’ we have
at the event A happening should just be some functionf(p) of p := P(A). There are a number
of reasonable conditions we should expect f to satisfy:

� f(1) = 0, since a certain event is no surprise;

� f should be decreasing, since rarer events are more surprising;

� f is continuous;

� f(pq) = f(p)+f(q), which can be motivated by considering independent events happening
with probability p and q;

� finally, for normalisation we may as well assume f(1/2) = 1.

It turns out that f(p) = 1
log p is the unique function satisfying these constraints. Then, H(X)

is the expected value, taken over the range of X, of the surprise of the event that X takes a
certain value, and so H(X) is the only ‘reasonable’ function representing the idea following these
heuristics.

As an example, consider X ∼ Ber(p), then

H(X) = p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
,

and so as p→ 1 or 0, H(X)→ 0. Since this value will come up later in the course, we will write

h(p) := p log

(
1

p

)
+ (1− p) log

(
1

1− p

)
.

It is not hard to see that the entropy of this particular X is maximised when p = 1/2, when
H(X) = 1, and in fact in general we have that:

Lemma 4.1. Let X be a discrete random variable and let R be the range of X.

H(X) ≤ log (|R|).

with equality if X is uniformly distributed.
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Proof. We will use the following consequence of Jensen’s inequality. Let f be concave on [a, b],
λi ≥ 0 such that

∑n
i=1 λi = 1 and let x1, . . . xn ∈ [a, b]. Then if we consider a real random

variable Y taking the values xi with probability λi, we have that
n∑
i=1

λif(xi) = E(f(Y )) ≤ f(E(Y )) = f

(
n∑
i=1

λixi

)
.

We note that f(x) = log (x) is a concave function on (0,∞), which can be seen since its derivative
1
x is decreasing on (0,∞), and so

H(X) =
∑
x∈R

p(x) log

(
1

p(x)

)
≤ log

(∑
x∈R

p(x)

p(x)

)
= log (|R|).

Finally it is easy to see that if X is uniformly distributed then p(x) = 1
|R| for each x ∈ R and so

H(X) = log (|R|).

This gives a useful connection between entropy and counting. We are going to define a whole
host of generalisations of the entropy function, and in order to try and give you some intuition
for such things, and give some working examples of calculating entropy, we’ll keep a motivating
example in mind as we go through these definitions.

Consider the probability space Ω given by a sequence of N fair coin flips for N very large,
and the random variable X : Ω → {0, 1}[N ] where Xi = 1 if the ith coin flip was heads and 0
if it was tails. For every subset A ⊂ [N ] we can consider the random variable XA given by the
restriction of X to just the coordinates in A. In this way we have a correspondence between
random variables and subsets.

Since XA is uniformly distributed on {0, 1}A, Lemma 4.1 tells us that H(X) = log |{0, 1}A| =
log 2|A| = |A|. So, in this setting there is a correspondence between the entropy of XA and the
cardinality of the set A.

Given two discrete random variables, X and Y , we define the joint entropy (X,Y ) to be

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
,

where, as before, p(x, y) := P(X = x, Y = y). Note that, if X and Y are independent then, by
definition p(x, y) = p(x)p(y) for all x ∈ X and y ∈ Y , and so

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

∑
y

p(x)p(y) log

(
1

p(x)p(y)

)
=
∑
x

∑
y

p(x)p(y)

(
log

(
1

p(x)

)
+ log

(
1

p(y)

))
=
∑
x

p(x) log

(
1

p(x)

)∑
y

p(y) +
∑
y

p(y) log

(
1

p(y)

)∑
x

p(x)

=
∑
x

p(x) log

(
1

p(x)

)
+
∑
y

p(y) log

(
1

p(y)

)
= H(X) +H(Y )
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However, in general that will not be the case.

So, in our example if we have two subsets A and B, what will the joint entropy of XA and
XB be? Well XA takes values in {0, 1}A and XB takes values in {0, 1}B, but given x ∈ {0, 1}A
and y ∈ {0, 1}B it’s not necessarily true that p(x, y) = p(x)p(y), that is, the random variables
XA and XB are not necessarily independent. Indeed, since XA and XB are restrictions of the
same random variable X, for every i ∈ A ∩B we have (XA)i = (XB)i.

So, what will the term p(x, y) look like? Well, for a fixed x ∈ {0, 1}A, if y disagrees with
x in a coordinate i ∈ A ∩ B, then p(x, y) is clearly 0. Otherwise, since A and B were both
uniformly distributed over their range, p(x, y) = 2|A∩B|−|A|−|B| and there are exactly 2|B|−|A∩B|

such y ∈ {0, 1}B which agree with x on {0, 1}A∩B. Hence we can calculate

H(XA, XB) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

2|B|−|A∩B| · 2|A∩B|−|A|−|B| log 2|A|+|B|−|A∩B|

= 2|A|+|B|−|A∩B| · 2|A∩B|−|A|−|B| log 2|A|+|B|−|A∩B|

= |A|+ |B| − |A ∩B| = |A ∪B|.

So, in this context the joint entropy corresponds to the cardinality of the union A ∪B.

We also define the conditional entropy of Y given X in the following way. Let us write, as
another shorthand, p(y|x) := P(Y = y|X = x), and similarly p(x|y). We define

H(Y |X) :=
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
x

p(x)H(Y |X = x)

= Ex
(
H(Y |X = x)

)
.

Where the first equation is a definition, and the other equalities are merely different ways to
rewrite this quantity. Note the difference between H(Y |X = x), which is the entropy of the
random variable (Y |X = x), and H(Y |X), which is the expected value of the latter over all
possible values of x. In particular, (Y |X) is not a random variable.

Back to our example, given subsets A and B and considering H(XB|XA), what will p(y|x)
be? Well, as before, given a fixed x, this term is 0 unless x and y agree on {0, 1}A∩B, and if
they do agree on A∩B then it is clear that p(y|x) = 2−|B\A|. Also, for each x, there are exactly
2|B|−|A∩B| = 2|B\A| such y which agree with x on {0, 1}A∩B. Hence we can calculate

H(XB|XA) :=
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
x

p(x)2|B\A|2−|B\A| log
(

2|B\A|
)

= 2|A|2−|A| log
(

2|B\A|
)

= |B \A|.

So, in this context the conditional entropy corresponds to the cardinality of the set difference
B \A.

38



We can think of the conditional entropy as being the expected surprise in learning the value
of Y , given that the value of X is known. We might expect, heuristically, that having extra
knowledge should only decrease how surprised we are, and indeed that turns out to be the case:

Lemma 4.2 (Dropping conditioning). Let X,Y and Z be discrete random variables. Then

H(Y |X) ≤ H(Y ).

Proof. Noting that p(y)p(x|y) = p(x)p(y|x) = p(x, y), we see that

H(Y |X) =
∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
=
∑
y

p(y)
∑
x

p(x|y) log

(
1

p(y|x)

)

≤
∑
y

p(y) log

(∑
x

p(x|y)

p(y|x)

)

=
∑
y

p(y) log

(∑
x

p(x)

p(y)

)

=
∑
y

p(y) log

(
1

p(y)

)
= H(Y ).

Where in the above we make repeated use of the fact that, if we sum the probabilities that a
random variable takes a specific value over its entire range, then the result is 1, and Jensen’s
inequality (See Lemma 4.1) in the third line.

Using our correspondence between the set world and the random variable world, we can now
use Lemma 4.2 to say something about sets. Indeed, we have that

|B \A| = H(XB|XA) ≤ H(XB) = |B|.

In a similar fashion, any identity or inequality about entropy will specialise to a combinatorial
identity or inequality about finite sets. The converse is not true, but sometimes it can give
intuition about what identities may hold. For example, we know that |A ∪ B| = |A| + |B \ A|.
Translating this back into the language of entropy would give the statement H(XA, XB) =
H(XA) +H(XB|XA), which we will see in fact holds for all pairs of random variables.

Lemma 4.3 (Chain rule). Let X and Y be discrete random variables. Then

H(X,Y ) = H(X) +H(Y |X).
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Proof.

H(X,Y ) =
∑
x

∑
y

p(x, y) log

(
1

p(x, y)

)
=
∑
x

∑
y

p(x, y) log

(
1

p(x)p(y|x)

)
=
∑
x

∑
y

p(x, y) log

(
1

p(x)

)
+
∑
x

∑
y

p(x, y) log

(
1

p(y|x)

)
=
∑
x

p(x) log

(
1

p(x)

)
+
∑
x

∑
y

p(x)p(y|x) log

(
1

p(y|x)

)
= H(X) +

∑
x

p(x)
∑
y

p(y|x) log

(
1

p(y|x)

)
= H(X) +H(Y |X).

One can also define the joint entropy of a sequence of discrete random variablesX1, X2, . . . , Xn

in a similar way and by induction it follows that

H(X1, X2, . . . , Xn) = H(X1) +H(X2|X1) + . . . H(Xn|X1, X2, . . . , Xn−1).

We shall sometimes also refer to this as the chain rule. Note that, by Lemma 4.2 and Lemma
4.3 we have that

H(X1, X2, . . . , Xn) ≤
∑
i

H(Xi). (4.1)

This seemingly quite simple statement is really quite useful, since it allows us to reduce the
calculation of the entropy of a single random variable, to the calculation of many, hopefully
simpler, random variables. Often, using this we can turn quite ‘global’ calculations into ‘local’
ones which are much easier to deal with.

So far we have an analogue of set union and set difference, so a natural idea would be consider
the entropic function corresponding to intersection. Since |A ∩ B| = |A| + |B| − |A ∪ B| this
quantity should be represented by H(X)+H(Y )−H(X,Y ). We call this the mutual information
of X and Y and it is denoted by I(X;Y ). Note that, by Lemma 4.3

I(X;Y ) := H(X) +H(Y )−H(X,Y ) = H(X)−H(X|Y ) = H(Y )−H(Y |X).

As the name suggests, we can think of this quantity of measuring the amount of information
that X and Y share, and indeed this should be the amount of information ‘left’ from H(X) after
we get rid of the information remaining in X once we know Y , H(X|Y ). From Lemma 4.2 if
follows that I(X;Y ) ≥ 0, and in fact by analysing when we get equality in Jensen’s inequality
one can show that I(X;Y ) = 0 if and only if X and Y are independent. Hence, the mutual
information is in some way a measure of the dependence of the random variables X and Y .
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4.2 Brégman’s Theorem

The permanent of an n× n matrix A is

perm(A) =
∑
σ∈Sn

n∏
i=1

aiσ(i)

where Sn is the set of permutations of [n]. Note that this is very close to the definition of det(A),
only with the factor of (−1)sgn(σ) removed. Given a 0/1 matrix A we should expect that we
can bound the permanent in terms of the number of non-zero entries of A in some way. In 1963
Minc gave a very natural conjecture for a bound given the row sums.

Conjecture 4.4 (Minc’s Conjecture). Let A be an n × n 0/1 matrix such that the sum of the
entries of the ith row is ri. Then

perm(A) ≤
n∏
i=1

(ri!)
1
ri .

It turns out this conjecture can be very easily transformed into an equivalent conjecture
about graphs. There is a natural correspondence between n × n 0/1 matrices and bipartite
graphs with partition classes of size n. Given such a matrix A we can consider a graph G on
vertex set (V,W ) where V = {v1, . . . , vn} and W = {w1, . . . , wn} with an edge between vi and
wj if and only if aij = 1.

Now, a permutation σ gives a non-zero contribution to perm(A) if and only if aiσ(i) = 1 for
all i ∈ [n], that is, if and only if (vi, wσ(i)) is an edge for every i ∈ [n]. However, since σ is
injective, {(vi, wσ(i)) : i ∈ [n]} gives a perfect matching of G. Conversely, any perfect matching
M of G determines a permutation σ of [n] given by σ(i) = j such that (vi, wj) ∈ M , and the
contribution of this permutation to perm(A) is non-zero. Putting this together we see that if
we write Φ(G) for the set of perfect matchings of G and φ(G) = |Φ(G)| then

perm(A) = φ(G).

Since the row sums of A are precisely the degrees of vertices in V , an upper bound on the
permament of A in terms of the row sums is equivalent to an upper bound on the number of
perfect matchings of G in terms of the degrees of vertices in one partition class. Minc’s conjecture
was proved by Brégman’s, and so is now known as Brégman’s Theorem, but we will give a proof
using entropy methods due to Radhakrishnan.

Theorem 4.5 (Brégman’s Theorem). Let G be a bipartite graph on vertex classes A and B
such that |A| = |B| = n. Then

φ(G) ≤
∏
v∈A

(d(v)!)
1

d(v) .

Proof. Let M be a perfect matching of G chosen uniformly at random from Φ(G). For con-
venience we will associate A with the set [n] in the natural way, and denote by di the de-
gree of the vertex i. For each i ∈ [n] let Xi be the neighbour of i in M and we identify
M with X = (X1, X2, . . . , Xn). More precisely, since M determines and is determined by
(X1, X2, . . . , Xn) it follows that H(M) = H(X).
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Since M is unifromly distributed over φ(G) possibilities we have that H(M) = H(X) =
log (φ(G)). Hence if we can bound H(X) from above, we can also bound φ(G). Note that to
get the stated bound we would need to show that

H(X) ≤
n∑
i=1

log (di!)

di
.

A naive first approach might be the use the sub-additivity of entropy to say

H(X) ≤
n∑
i=1

H(Xi),

and since there are at most di possibilities for the random variable Xi we have that

H(X) ≤
n∑
i=1

H(Xi) ≤
n∑
i=1

log (di).

However, by Stirling’s approximation, log (di!)/di ∼ log (di/e), and so this bound is not enough.
However perhaps we can improve this bound by using the chain rule, since we have

H(X) =
n∑
i=1

H(Xi|X1, X2, . . . Xi−1).

We can think of this as revealing the matching one edge at a time, and working out the remaining
entropy at each step given what we know. Now instead of just using the naive bound for each
Xi we can hopefully take into account the fact that, if we already know X1, , X2, . . . Xi−1 this
may reduce the number of possibilities for Xi, since some of the vertices 1, 2, . . . , i − 1 may be
matched to neighbours of i in M , reducing the range of Xi.

So, we hope that the expected range of Xi once we’ve revealed X1 up to Xi−1 will be
significantly lower than di so that we can bound the expected entropy by a smaller amount.
However, the amount that this range will decrease will depend very much on the ordering we
chose for the vertices when we identified A with [n]; if i doesn’t have any shared neighbours with
1, 2, . . . , i− 1 in G then the range of Xi will not be reduced at all when we reveal X1, . . . , Xi−1.
Furthermore, to work out this expected gain, we would have to know something about the
distribution of the edges in the matching M .

However, for each vertex v ∈ A there are some orderings of A in which we might hope that
it’s likely that the range of Xv is reduced by revealing the neighbours of Xw with w < v, so at
least we might hope that the range is reduced on average.

That is, perhaps a sensible idea is to average the chain rule over all possible orderings of
A. Explicitly, given any permutation σ of [n] we can apply the chain rule with respect to the
ordering given by σ to see

H(X) =

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1)).

Then, averaging over all possible choices of σ

H(X) ≤ 1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1)).
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It turns out that this idea will also make it easier to work out the expected gain we get by
exposing the neighbours of earlier vertices.

For each i ∈ [n] and permutation σ let us write Jσ,i = {k : σ(k) < σ(i)} ⊆ [n] \ {i}. Each
term in the sum above is of the form H(Xi|XJσ,i). So we can re-write the sum as

H(X) ≤ 1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1))

=
1

n!

n∑
i=1

∑
σ

H(Xi|XJσ,i)

For each of these terms, if we think about calculating them sequentially, we’ve reduced the
range of Xi by how many of the previously exposed Xj lie in N(i), the neighbourhood of i. For
each fixed value of XJσ,i , which corresponds to some sequence of |Jσ,i| many vertices in B, say
C, the entropy of Xi conditioned on XJσ,i = C can be bounded above by log(|N(i) \ C|). So,
let us denote by Nσ(i) = N(i) \ {Xj : j ∈ Jσ,i} the vertices in the neighbourhood of i without
those already chosen by some Xj .

It follows that, for any fixed σ and i we can calculate as follows, where C ranges over sequences
of vertices in N(i) of length |Jσ,i|

H(Xi|XJσ,i) =
∑
C

P(XJσ,i = C)H(Xi|XJσ,i = C)

≤
di∑
j=1

P(|Nσ(i)| = j) log j

Where we used the definition of conditional entropy, and then Lemma 4.1. However, since
we’re picking a random matching, it doesn’t seem like we have any control over this improvement,
since we don’t know how much this will reduce the range of Xi.

However, for any fixed matching M , if we pick a random permutation σ, we claim that the
size of |Nσ(i)| is in fact uniformly distributed between 1 and di. Indeed, for a given matching we
only care about the order in which we pick i and the vertices matched in M to the neighbours
of i. Since i is equally likely to be chosen in any position in this list, the claim follows. In
other words, for a fixed matching M , the proportion of σ such that |Nσ(i)| = k is 1

di
for each

1 ≤ k ≤ di.

Since this is true separately for each particular matching, then it is also true when we pick a
random matching. So, even though we can’t bound any of the terms P(|Nσ(i)| = j) for a fixed
σ, we can bound their average.

That is to say, if we pick M and σ both uniformly at random then

Pσ,M (|Nσ(i)| = j) = 1/di

or equivalently
1

n!

∑
σ

P(|Nσ(i)| = j) =
1

di
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Hence,

H(X) =
1

n!

∑
σ

n∑
i=1

H(Xσ(i)|Xσ(1), Xσ(2), . . . Xσ(i−1))

=
n∑
i=1

1

n!

∑
σ

H(Xi|XJσ,i)

≤
n∑
i=1

1

n!

∑
σ

di∑
j=1

P(|Nσ(i)| = j) log (j)

=
n∑
i=1

di∑
j=1

(∑
σ

1

n!
P(|Nσ(i)| = j)

)
log (j)

=

n∑
i=1

di∑
j=1

log j

di
=

n∑
i=1

log (di!)

di

giving the bound as claimed.

Note that this bound is tight. If we take G to be n
d copies of Kd,d then we have that d(v) = d

for all v ∈ A and every matching consists of picking one from the d! possible matchings on each
Kd,d. Therefore.

φ(G) =

n
d∏
i=1

d! =
∏
v∈A

(d(v)!)
1

d(v) .

A natural question to ask is what happens for a non-bipartite G? It turns out a similar
bound can be given, and as we will see in the examples sheet, it can actually be derived in a
clever way from Brégman’s Theorem.

Theorem 4.6. Let G = (V,E) be a graph with |V | = 2n. Then

φ(G) ≤
∏
v∈V

(d(v)!)
1

2d(v) .

4.3 Shearer’s lemma and projection inequalities

4.3.1 Shearer’s Lemma

Given a sequence of discrete random variables random variables X1, X2, . . . , Xn and some subset
A ⊆ [n] let define XA := (Xi : i ∈ A).

Lemma 4.7 (Shearer’s inequality). Let X1, X2, . . . , Xn be discrete random variables and A a
collection (not necessarily distinct) of subsets of [n], such that each i ∈ [n] is in at least m
members of A. Then

H(X1, X2, . . . , Xn) ≤ 1

m

∑
A∈A

H(XA).
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Proof. Let A = {a1, a2, . . . , ak} with a1 < a2 < . . . < ak. We have that

H(XA) = H(Xa1) +H(Xa2 |Xa1) + . . .+H(Xak |Xa1 , Xa2 , . . . , Xak−1
)

≥ H(Xa1 |X<a1) +H(Xa2 |X<a2) + . . .+H(Xak |X<ak),

where X<i = (X1, X2, . . . Xi−1). This follows from repeated applications of the chain rule, and
the fact that entropy only decreases if we condition on more variables. Therefore∑

A∈A
H(XA) ≥ m.

∑
i∈[n]

H(Xi|X<i)

= m.H(X1, X2, . . . , Xn)

4.3.2 The Bollobás-Thomason Box Theorem

Shearer’s Lemma is closely related to notions of isoperimetry, the relation between the volume
of a shape and it’s ‘perimeter’ in the following way. If we think about a shape S ⊆ Rn with area
|S| then we can think about the process of picking a random point inside of S. This determines
a vector X = (X1, . . . , Xn) where the Xi are dependent on each other, depending on what the
shape S is.

Suppose we take a very fine grid approximating Rn, we can then think of S as being a
discrete subset of this grid, whose number of points is proportional to |S|. Since this vector
X = (X1, . . . , Xn) now has some finite range, we can relate the volume of S directly to the
entropy of X. That is

H(X) = log |S|.

How can we interpret the random variable XA for A ⊂ [n]? Well in this case, this is relatively
clear, these correspond to the projections on the shape S onto the subspace spanned by the
coordinates in A. That is, if we let SA be the projection of S onto the subspace

{(x1, . . . , xn) : xi = 0 for all i ∈ A}

Then the range of XA is the ‘volume’ (in the n − |A|-dimensional sense) of SA. We will write
Sj for S{j}.

In this way, Shearer’s inequality gives us a way to relate the volume of a shape to it’s lower
dimensional projections. For example, if we just consider the 1-dimensional projections, we have
the famous Loomis Whitney inequality:

Theorem 4.8 (The Loomis-Whitney inequality). Let S ⊂ Zn then,

|S|n−1 ≤
n∏
i=1

|S[n]\{i}|

For example, in two dimensions this simply says that the area of a shape can be bounded
above by the product of its one-dimensional projections, a relatively trivial fact. But even in
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three-dimensions it is not clear what the relationship should be between the volume of a shape
and its projections onto two dimensional subspaces.

Notice that, this theorem is tight when |S| is a ‘box’, that is, a set of the form [1,m1] ×
[1,m2]× . . .× [1,mn]. Indeed, the volume of |S| is

∏n
i=1mi and the volume of the projection of

S onto the hyperplane where xi = 0 is just
∏
j 6=imi. This is perhaps not surprising, as a box

represents the case where the Xis are independent, where we get equality in the argument for
Shearer’s inequality.

In fact, we will show a more general theorem, and deduce the Loomis-Whitney theorem as
a corollary. We say a collection of sets C = {C1, . . . , Cm} ⊂ 2[n] is a k-uniform cover if each
i ∈ [n] belongs to exactly k many of the Cj .

Theorem 4.9 (Uniform covers theorem). Let S ⊂ Zn and let C ⊆ 2[n] be a k-uniform cover,
then

|S|k ≤
∏
C∈C
|SC |

Remark 4.10. Note that C = {[n] \ {i} : i ∈ [n]} is an (n − 1)-uniform cover of [n], and so
Theorem 4.8 follows from Theorem 4.9.

Proof. Let us choose a point X = (X1, . . . , Xn) uniformly at random from S. Then, H(X) =
log |S|. Since C is a k-uniform cover, ever i ∈ [n] is in at least k many CinC (in fact, in exactly
k many), and so by Lemma 4.7 it follows that

H(X) ≤ 1

k

∑
C∈C

H(XC).

However, the range of XC is |SC | and so it follows that

H(X) ≤ 1

k

∑
C∈C

log |SC |.

Combining the two equatons we see that

log |S| ≤ 1

k

∑
C∈C

log |SC |

and so
|S|k ≤

∏
C∈C
|SC |,

as claimed.

As before, if we consider the 1-uniform cover {{i} : i ∈ [n]}, Theorem 4.9 tells us the
elementary fact the volume of a shape can be bounded by the product of its one-dimensional
projections.

By taking limits of finer and finer grids it is possible to show that Theorem 4.9 also holds for
subsets of Rn with the Lebesgue measure. In fact a rather amazing strengthening of Theorem
4.9 can be shown to hold, which is known as the Bollobás-Thomason Box Theorem. In what
follows we will write |S| for the Lebesgue measure of a set S ⊆ Rn.
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Theorem 4.11 (Bollobás-Thomason Box Theorem). Let S ⊂ Rn be compact. Then there is a
box A ⊂ Rn such that |A| = |S| and |AI | ≤ |SI | for all I ⊆ [n].

That is, for any shape we can find a box of the same volume such that every lower dimen-
sional projection of this box has smaller volume than the corresponding projection of S. This
immediately tells us that for any upper bound we might want to prove for the volume of a set
in terms of the volumes of its projection, we only have to check that it holds for boxes.

Indeed, if we know that for every box A, |A| ≤ f(AI : I ⊂ [n]) for some function f which is
increasing in each coordinate, then for any S we have that |S| = |A| ≤ f(AI : I ⊂ [n]) ≤ f(SI :
I ⊂ [n]).

It is possible to prove this theorem via a continuous version of Theorem 4.9 (which can be
proven analytically using Hölder’s inequality) and a careful inductive argument, but we can also
do so using an entropy argument, however to do so we will need to define a notion of entropy for
continuous random variables. Suppose X is a continuous random variable taking values in Rn
with probability density function f , then a natural guess for the entropy of X is the following:

H(X) = −
∫
f(x) log f(x)dx

where integration is with respect to the Lebesgue measure. This does not inherit every property
of the discrete entropy, for example it can take negative values, however, many of useful prop-
erties of H are still true in this setting, and we will assume without proof that the following are
true:

� If P(X ∈ S) = 1 then H(X) ≤ log |S| with equality if X is uniform on S;

� For any X and Y , H(X|Y ) ≤ H(X).

� If we write X = (X1, . . . , Xn) and XI = (Xi : i ∈ I) then

H(X) =
n∑
i=1

H(Xi|X[i−1]).

Proof of Theorem 4.11. Let X be a random variable uniformly distributed on S, then H(X) =
log(|S|). Let us define ai = 2H(Xi|X[i−1]) and let A = [0, a1] × [0, a2] × . . . × [0, an] be a box in
Rn.

Now, for any I ⊆ [n], XI takes values in SI , and hence H(XI) ≤ log |SI |. On the other hand,
using the chain rule we see that, if I = {i1 < i2 < . . . < ik}

H(XI) = H(Xi1) +H(Xi2 |Xi1) + . . .+H(Xik |Xi1 , Xi2 , . . . , Xik−1
)

≥
∑
j∈I

H(Xj |X[j−1])

=
∑
j∈I

log aj

= log

∏
j∈I

aj


= log |AI |.
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Hence, log |SI | ≤ log |AI | and so |SI | ≤ |AI |.

Since, as mentioned above, Theorem 4.9 is in fact equivalent to Shearer’s lemma we might
expect there to be an entropy equivalent to the Box Theorem, and we shall show on the example
sheet that this is the case.

Theorem 4.12. Let X = (X1, . . . , Xn) be a discrete random variable. Then there are non-
negative constants h1, . . . , hn such that H(X) =

∑
i hi and∑

i∈I
hi ≤ H(XI)

for every I ⊆ [n].

4.4 Independent Sets in a Regular Bipartite Graph

Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and B, and let I(G)
be the set of independent subsets of V (G). We would like to bound this number from above.
As in the case of Brégman’s Theorem, letting G be a disjoint union of Kd,d’s seems a natural
guess for a best possible graph. Indeed in G it is clear that any independent set in G consists
of an arbitrary subset taken from one side of each Kd,d. Therefore we have that

|I(G)| = (2d+1 − 1)
n
d .

The following proof of a corresponding upper bound on |I(G)| using entropy methods is due to
Kahn.

Theorem 4.13. Let G be a d-regular bipartite graph on 2n vertices with vertex classes A and
B, and let I(G) be the set of independent subsets of V (G). Then

|I(G)| ≤ (2d+1 − 1)
n
d

Proof. The basic idea of the proof is the same as in Theorem 4.5, we pick a random independent
set I and estimate the entropy H(I). As before we have that H(I) = log (|I|).

We identify I with its characteristic vector (Xv : v ∈ A ∪ B), note that I determines and
is determined by (XA, XB). The idea is that, rather than splitting X into Xv for each v, we
can use the neighbourhoods of each v ∈ A as a d-uniform cover of the vertices of B, and so use
Shearer’s Lemma to express XB in terms of XN(v).

For each v ∈ A let N(v) be the neighbourhood of v in B. Each w ∈ B is in exactly d of the
sets N(v) and so we have

H(I) = H(XA|XB) +H(XB)

≤
∑
v∈A

H(Xv|XB) +
1

d

∑
v∈A

H(XN(v))

≤
∑
v∈A

(
H(Xv|XN(v)) +

1

d
H(XN(v)

)
,
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where the second line follows from Shearer’s inequality, and the third since N(v) ⊂ B.

Fix some v ∈ A. Let χv be the indicator random variable of the event that I contains a
vertex of N(v), and let p := P(χv = 0), that is the probability that I ∩N(v) = ∅. The nice thing
about this random variable is that it contains all the information about XN(v) that we need to
determine H(Xv|XN(v)).

Hence ,

H(Xv|XN(v)) ≤ H(Xv|χv)
= P(χv = 0)H(Xv|χv = 0) + P(χv = 1)H(Xv|χv = 1)

= P(χv = 0)H(Xv|χv = 0) ≤ p,

since the event χv = 1 determines that Xv = 0, and since H(Xv) ≤ log (|range(Xv)|) = 1.

Also,

H(XN(v)) = H(XN(v), χv)

= H(χv) +H(XN(v)|χv)
≤ h(p) + (1− p) log (2d − 1),

where h(p) = p log (1/p) + (1− p) log (1/(1− p)). Putting these inequalities together gives us

H(I) ≤
∑
v∈A

(p+
1

d

(
h(p) + (1− p) log

(
2d − 1

))
.

All that remains is to maximise the quantity on the right hand side according to p. It is a
simple exercise to check that the function is convex, and to calculate its derivative, giving that
the maximum is attained at p = 2d/(2d+1 − 1), and so (1− p) = 2d − 1/(2d+1 − 1) giving that:

H(I) ≤
∑
v∈A

(p+
1

d

(
h(p) + (1− p) log

(
2d − 1

))
= n

(
p+

1

d

(
p log (1/p) + (1− p) log (1/(1− p)) + (1− p) log

(
2d − 1

)))
= n

(
p+

1

d

(
p log

(
2d+1 − 1

2d

)
+ (1− p) log

(
2d+1 − 1

2d − 1

)
+ (1− p) log

(
2d − 1

)))
= n

(
p+

1

d

(
p log

(
2d+1 − 1

)
− pd+ (1− p) log

(
2d+1 − 1

)))
= n

(
p− p+

1

d

(
(p+ (1− p)) log

(
2d+1 − 1

)))
= n

1

d
log
(

2d+1 − 1
)

log (|I|) = H(I) ≤ n.1
d

log
(

2d+1 − 1
)
,

from which the result follows.

As with Theorem 4.5 it is possible to deduce a bound for the number of independent sets in a
general d-regular graph from Theorem 4.13, however it requires a clever idea using the bipartite
double cover of G, which wasn’t discovered for quite some time.
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There’s another way to approach this proof, starting from the application of Shearer’s Lemma
to see that ∑

v∈A

(
H(Xv|XN(v)) +

1

d
H(XN(v)

)
,

which is slightly more conceptually difficult, but is easier to generalise.

The idea is to fix some v ∈ A and look at the expression

dH(Xv|XN(v)) +H(XN(v)).

Recall that XN(v) is some vector in {0, 1}N(v) ∼ {0, 1}d and Xv is just some Ber(p) random
variable for some (unknown) p. Furthermore, if we condition on XN(v) being non-zero, then Xv

has to be 0.

The idea is to replace Xv with d independent, identically distributed random variables
X1
v , . . . , X

d
v , each of which has the same joint distribution with XN(v) as Xv does. We then

have that

dH(Xv|XN(v)) +H(XN(v) =
d∑
i=1

H(Xi
v|XN(v)) +H(XN(v)

= H(X1
v , X

2
v , . . . , X

d
v |XN(v)) +H(XN(v)

= H(XN(v), X
1
v , X

2
v , . . . , X

d
v ),

since the Xi
v are independent, and then using the chain rule in the last line. However Y =

(XN(v), X
1
v , X

2
v , . . . , X

d
v ) is distributed on {0, 1}2d, and is such that if there is a 1 in the first d

co-ordinates then there last d co-ordinates are all 0.

Hence we can think of Y as being distributed on the set of independent sets of Kd,d. It might
not be uniformly distributed, but it follows that

H(Y ) ≤ log |I(Kd,d)| = log
(

2d+1 − 1
)
.

This proof generalises quite well to counting homomorphisms from G to a fixed (multi-)graph
H. A graph homomorphism is a map f : V (G) → V (H) such that every edge in G is mapped
to an edge in H. Indeed, then if we consider H to be a graph on {0, 1} with an edge between
0 and 1 and a loop at 1, then a map f : G → {0, 1} can be seen to be a homomorphism if and
only if f−1(0) is an independent set. Similarly you can count proper k-colourings of G as the
number of homomorphism from G to Kk. If we write Hom(G,H) for the set of homomorphisms
from G to H then essentially the same proof as above shows the following.

Theorem 4.14. Let G be a d-regular bipartite graph on 2n vertices, then for any multigraph H

|Hom(G,H) ≤ |Hom(Kd,d, H)|
n
d .

Unfortunately the bipartite double cover trick doesn’t work here to extend this result to
arbitrary graphs, and in fact the result isn’t true in general, which can be seen by considering
for example two disjoint loops.
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5 The Container Method

5.1 Triangle-free graphs

Many well-known problems in combinatorics concern families of discrete objects which avoid
certain forbidden configurations, for example H-free graphs, or sets of integers containing no
arithmetic progression. Often one is interested in the size and structure of extremal examples
e.g. Turán’s Theorem or Szemerédi’s Theorem. Recently, there has been increasing interest in
what can be said about the typical structure of members of these families (i.e a uniformly chosen
example), and to extremal questions in (sparse) random graphs.

One recent method that has proved useful in considering such problems is to consider them
as example of a more general question about independent sets in hypergraphs. As an illustrative
example we will focus on the family Fn(K3) of triangles free graphs with vertex set [n].

Now, since every bipartite graph is triangle free, it is not hard to see that there are least 2
n2

4

triangle free graphs on n vertices. However, it turns out that there is a much smaller family Gn
of graphs on n vertices, where |Gn| = n

O
(
n

3
2

)
, that forms a set of containers for Fn(K3), which

means that for every H ∈ Fn(K3) there exists some G ∈ Gn such that H ⊆ G. Obviously we
can find such a family if we don’t restrict the structure of the graphs in Gn in any way, since the
graph Kn by itself would suffice, however the useful thing is that we can find such a collection
where every G ∈ Gn is ‘almost triangle-free’, in the sense that it contains ‘few’ triangles.

Why might this be useful? Well suppose we’re interested in the maximum number of edges
in a triangle-free subgraph of G(n, p). Clearly by taking the intersection of G(n, p) with Kn

2
,n
2

we can whp find such a subgraph with about half the number of edges in G(n, p). How might
we prove this to be optimal?

Well, an obvious approach would be to try to show that the number of triangle-free subgraphs
of G(n, p) with at least m edges is 0 for all m much larger than this, and a first attempt to
show that would be via the first moment method. However, if we let Xm be the number of such
subgraphs then again just by considering the subgraphs of Kn

2
,n
2

with at least m edges we have
(as long as m << n)

E(Xm) ≥
(n2

4

m

)
pm =

(
(1 + o(1))

epn2

4m

)m
which will be very large when m is around p

2

(
n
2

)
.

However, this collection of containers tells us that the set of triangle-free graphs with m
edges are ‘clustered’ together, which is creating a strong positive correlation between the events
encoding their appearances in G(n, p). By understanding this clustering we can group them
into related parts and deal with each part in one go. More precisely, if G(n, p) contained a
triangle-free graph with m edges then it must contain many of the edges in one of our containers
G ∈ Gn. Then, not only is this very unlikely to happen, Gn is a small enough collection that we
can use the union bound to conclude that whp G(n, p) doesn’t contain many edges in any of the
G ∈ Gn.

So, how does this relate to independent sets in hypergraphs? Let us consider the 3-uniform
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hypergraph H with vertex set V (H) = E(Kn) and edge set

E(H) = {(e1, e2, e3) ⊆ E(Kn) : e1, e2, e3 form a triangle}.

Then, an independent set in H is a set of vertices of H, and so corresponds to a set of edges
in Kn, or in other words a graph on n vertices, which doesn’t contain any hyperedge, or in
other words in graph doesn’t contain any triangle. Hence there is a natural bijection between
I(H), the family of independent sets of H, and Fn(K3). Hence, our previous statement about
the existence of our family of containers Gn is equivalent to the existence of a ‘small’ family
C of subsets of V (H), each containing only ‘few’ edges of H, such that every independent set
I ∈ I(H) is contained in some member of C. In other words we can find a ‘small’ collection of
almost independent sets which, between them, ‘contain’ all of the independent sets in H.

It turns out that the only properties of the hypergraph H that are necessary to prove such
a result are some assumptions on the maximum degree and codegree of vertices in H. If H is a
k-uniform hypergraph and A ⊆ V (H) we write dH(A) = |{e ∈ E(H) : A ⊆ e}| and for ` ≤ k we
write

∆`(H) = max{dH(A) : |A| = `}.

Lemma 5.1. For every c > 0 there exists δ > 0 such that if H is a 3-uniform hypergraph with
average degree d ≥ δ−1 and

∆1(H) ≤ cd and ∆2(H) ≤ c
√
d,

then there exists a collection C of subsets of V (H) with

|C| ≤
(
v(H)
v(Ḩ)√
d

)
such that

(a) for every I ∈ I(H), there exists C ∈ C such that I ⊆ C; and

(b) |C| ≤ (1− δ)v(H) for every C ∈ C.

Now, if H is the triangle containment hypergraph, then we have that v(H) =
(
n
2

)
, d =

∆1(H) = n− 2, since each edge in contained in exactly n− 2 triangles, and ∆2(H) = 1, since a
pair of edges is contained in at most one triangle. Hence we can apply Lemma 5.1 with c = 1
to find a collection C of subgraphs of Kn with

|C| ≤
((n

2

)
(n2)√
n

)
= n

O
(
n

3
2

)

such that

(a) every triangle-free graph is a subgraph of some C ∈ C; and

(b) Each C ∈ C has at most (1− δ)
(
n
2

)
edges.

However, this second condition isn’t quite what we claimed, that these containers would be
almost triangle free. In order to get this stronger conclusion we will have to iteratively apply
the lemma.
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Theorem 5.2. For each ε > 0 there exist C > 0 such that for each n ∈ N there exists a
collection Gn of graphs on n vertices with

|Gn| ≤ nCn
3
2 ,

such that

(a) every triangle-free graph on n vertices is a subgraph of some G ∈ Gn; and

(b) Each G ∈ Gn contains at most εn3 triangles.

Proof. We apply Lemma 5.1 with c = 1 to the triangle-free hypergraph to obtain a family C
which satisfies property (a) by the conclusion of the lemma. Suppose then that C doesn’t satisfy
property (b), and so there are some C ∈ C containing at least εn3 triangles. We will apply
Lemma 5.1 again to the subhypergraph H[C] of H induced by C for each such C.

Note that, by assumption the average degree of H[C] is at least 6εn since each triangle in C
gives an edge in H[C] and v(H[C]) ≤

(
n
2

)
(in fact, less than (1 − δ)

(
n
2

)
). Furthermore ∆1 and

∆2 can not increase, and so we can apply the lemma with c = 1
ε and replace C in C with the

collection of containers for I[(H[C]) given by the lemma.

Since each time we iterate this process the size of the new containers shrinks by at least
(1 − δ), eventually the containers we produce will have size size at most εn2, and so contain
at most εn3 triangles (since ∆1(H) ≤ n). Furthermore, the total number of iterations will be
bounded as a function of ε and δ.

Since each application of the lemma produces at most n
O
(
n

3
2

)
many new containers, the total

number of containers in the final collection is still n
O
(
n

3
2

)
.

5.2 Applications of Theorem 5.2

Let us demonstrate the strength of Theorem 5.2 with some applications. The first concerns a
well-known result of Mantel in extremal graph theory, which is a precursor to Turán’s theorem.

Theorem 5.3. Let G be a graph on n vertices with at least n2

4 edges, then G contains a triangle.

In other words, every subgraph of Kn with at least 1
2e(Kn) many edges contains a triangle.

The corresponding problem in the random graph G(n, p) was first considered by Frankl and
Rödl, who prove the following:

Theorem 5.4. For every δ > 0 there exists C > 0 such that if p ≥ C√
n

then whp every subgraph

G ⊆ G(n, p) with

e(G) ≥
(

1

2
+ α

)
p

(
n

2

)
contains a triangle.
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Note that, for p much smaller the expected number of triangles is O(n3p3), which is asymp-
totically smaller than the expected number of edges

(
n
2

)
p, and so, since both are well concen-

trated, whp by removing an edge from each triangle we can find a triangle-free subgraph with
(1 + o(1))p

(
n
2

)
many edges.

In order to prove this we will need the following so called supersaturation result for triangles.

Lemma 5.5. For every δ > 0 there exists ε > 0 such that if G is a graph on n vertices with

e(G) ≥
(

1

2
+ δ

)(
n

2

)
,

then G contains at least εn3 triangles.

Proof. If we calculate the average number of edges contained in a induced subgraph G[U ] on
|U | = N vertices, where N is large and constant, which we denote by D we see that

D =

∑
U e(G[U ])(

n
N

)
= e(G)

(
n−2
N−2

)(
n
N

)
≥
(

1

2
+ δ

)(
N

2

)

if N is large enough. Since e(G[U ]) ≤
(
N
2

)
it follows that at least a δ

2 proportion of the U satisfy

e(G[U ]) ≥
(

1

2
+
δ

2

)(
N

2

)
since otherwise

D =

∑
U e(G[U ])(

n
N

)
<

δ
2

(
n
N

)(
N
2

)
+
(
1− δ

2

) (
n
N

) (
1
2 + δ

2

) (
N
2

)(
n
N

)
≤
(

1

2
+
δ

2

)(
N

2

)
.

It follows from Theorem 5.3 that at least a δ
2 proportion of the U contain a triangle and

hence, if we write T (G) for the number of triangles in G

T (G) =

∑
U T (G[U ])(
n−3
N−3

)
≥

δ
2

(
n
N

)(
n−3
N−3

)
≥ δ

4N3
n3.

Hence we can take ε = δ
4N3 .
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Using this we can give a proof of Theorem 5.4 under the slightly stronger assumption that

p = ω
(

logn√
n

)
. Later on we will show how to get rid of this extra log term.

Proof of Theorem 5.4 for large p. By Lemma 5.5 with δ = α
2 there is some ε such that any graph

G on n vertices with e(G) ≥
(

1
2 + α

2

) (
n
2

)
contains at least εn3 many triangles. Let us apply

Theorem 5.2 with this ε to obtain a family Gn of containers such that each G ∈ Gn contaisn
fewer than εn3 many edges, and hence has at most

(
1
2 + α

2

) (
n
2

)
many edges.

Then, since every triangle free graph is a subgraph of some G ∈ Gn, if G(n, p) contains a
triangle-free graph with m edges, then in particular e(G ∩G(n, p)) ≥ m for some G ∈ Gn.

However, e(G∩G(n, p)) ∼ Bin (e(G), p) and hence e(G∩G(n, p)) is stochastically dominated
by Bin

((
1
2 + α

2

) (
n
2

)
, p
)

and hence by the Chernoff bounds

P
(
e(G ∩G(n, p)) ≥

(
1

2
+ α

)
p

(
n

2

))
≤ exp

(
−βpn2

)
for some constant β(α) > 0. Since there are at most n

O
(
n

3
2

)
many containers G, it follows by

the union bound that

P
(

there exists G ∈ Gn with e(G ∩G(n, p)) ≥
(

1

2
+ α

)
p

(
n

2

))
≤ nO

(
n

3
2

)
exp

(
−βpn2

)
= o(1).

Hence, with high probabilityG(n, p) does not contain any triangle-free graph with≥
(

1
2 + α

)
p
(
n
2

)
many edges.

Similarly the following result of Rödl and Ruciński has a simple proof via Theorem 5.2

Theorem 5.6. Let r ∈ N then there exists C > 0 such that if p ≥ C√
n

, then who every r-colouring

of the edges of G(n, p) contains a monochromatic triangle.

Again the proof uses a supersaturation result, namely:

Lemma 5.7. For every r ∈ N there exist n0 and ε > 0 such that for all n ≥ n0, every r-colouring
of the edges of Kn contains at least rεn3 monochromatic triangles.

The proof follows as with Lemma 5.5 by applying Ramsey’s theorem to the colourings induced
by subsets of [n] of size N for some large N .

Using this we can again give a proof of Theorem 5.6 under the slightly stronger assumption

that p = ω
(

logn√
n

)
.

Proof of Theorem 5.6 for larger p. We apply Lemma 5.7 to find an ε such that every (r + 1)-
colouring of the edges of Kn contains at least (r + 1)εn3 monochromatic triangles, and then
apply Theorem 5.2 with this ε to get a family of containers Gn, each of which contains fewer
than εn3 many triangles.
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Suppose that G(n, p) does not satisfy the conclusion of the theorem, then there is an r-
colouring such that each of the subgraphs Hi spanned by the colour i ∈ [r] are triangle-free.
Thus G(n, p) =

⋃r
i=1Hi. By assumption there exists containers Gi such that Hi ⊆ Gi for each

i, and so G(n, p) ⊆
⋃r
i=1Gi.

We now apply Lemma 5.7 to the (r+1)-colouring given by assigning to each edge e ∈
⋃r
i=1Gi

some colour i such that e ∈ Gi and the colour (r + 1) to the edges in Kn \
⋃r
i=1Gi.

Lemma 5.7 implies that this colouring has at least (r+ 1)εn3 many monochromatic triangle,
and each Gi contains at most εn3 many triangles, and so Kn \

⋃r
i=1Gi contains at least εn3

many triangles.

However, each edge of Kn belongs to fewer than n triangles and so e (Kn \
⋃r
i=1Gi) ≥ εn2.

Consequently, for every fixed collection G1, . . . , Gr ∈ Gn,

P

(
G(n, p) ⊆

r⋃
i=1

Gi

)
= (1− p)e(Kn\

⋃r
i=1 Gi) ≤ (1− p)εn2 ≤ e−εpn2

.

Since there are at most n
O
(
n

3
2

)
many containers in G, by the union bound the probability

that G(n, p) ⊆
⋃r
i=1Gi for any collection G1, . . . Gr ∈ Gn is at most(

|Gn|
r

)
e−εpn

2 ≤ nO
(
n

3
2

)
e−εpn

2
= o(1).

As before this extra log factor can be removed with a more careful analysis which we will
perform later.

Finally, a third application comes from the following theorem of  Luczak. We say that a a
graph G is t-close to bipartite if there exists a bipartite subgraph G′ ⊆ G with e(G′) ≥ e(G)− t.

Theorem 5.8. For every α > 0, there exists a C > 0 such that if m ≥ Cn
3
2 , then almost all

triangle-free graphs with n vertices and m edges are αm-close to bipartite.

Again the proof goes via a supersaturation type result, although this one has a slightly more
involved proof, which we will not give.

Lemma 5.9. For every δ > 0 there exists ε > 0 such that if G is a graph on n vertices with

e(G) ≥
(

1

2
− ε
)(

n

2

)
,

then either G is δn2 close to bipartite or G contains at least εn3 many triangles.

Again we only give a proof for larger m = ω
(
n

3
2 log n

)
.
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Proof of Theorem 5.6 for larger m. We apply Lemma 5.9 with δ(α) sufficiently small to find ε
such that the conclusion of the lemma holds. Applying Theorem 5.2 with this ε we get a family
of containers Gn, each of which contains fewer that εn3 many triangles, and so by Lemma 5.9
each G ∈ Gn is either δn2 close to bipartite or satisfies

e(G) ≤
(

1

2
− ε
)(

n

2

)
.

So, let us estimate the number of triangle-free graphs H with n vertices m edges which are
not αm-close to bipartite; note that each such H is subgraph of some container G ∈ Gn.

Suppose first that G satisfies the second condition, and so has few edges. In which case the
number of subgraphs H of G with exactly m edges, triangle-free or otherwise, is at most(

e(G)

m

)
≤
((1

2 − ε
) (

n
2

)
m

)
≈ (1− 2ε)m

(n2

4

m

)
.

On the other hand, if there is some bipartite G′ ⊆ G such that e(G′) ≥ e(G)− δn2 then since
e(H ∩G′) ≤ (1− α)m, by our assumption on H, the number of such H is at most(

e(G)− e(G′)
αm

)(
e(G)

(1− α)m

)
≤
(
δn2

αm

)( (
n
2

)
(1− α)m

)
≤
(
e

δα

αα(2(1− α))1−α

)m(n2

m

)m
≤ 2−m

(n2

4

m

)
as long as δ(α) is small enough. Hence, by summing over every possible G ∈ Gn the total number
of such H at most

n
O
(
n

3
2

)
(1− 2ε)m

(n2

4

m

)
�
(n2

4

m

)
since m� n

3
2 log n.

However, since every bipartite graph is triangle free there are clearly at least
(n2

4
m

)
many

triangle-free graphs H on n vertices and with m edges.

5.3 The Container Lemma

Let us start by considering the easier case of 2-uniform hypergraphs, i.e graphs.

Lemma 5.10. For every c > 0 there exists δ > 0 such that if G is a graph with average degree
d, maximum degree ∆(G) ≤ cd and τ := 2δ

d then there exists a collection C of susbets of V (G)
with

|C| ≤
(

v(G)

dτv(G)e

)
,

such that

57



(a) for every I ∈ I(G), there exists C ∈ C such that I ⊆ C; and

(b) |C| ≤ (1− δ)v(G) for every C ∈ C.

Proof. The key idea in the proof will be to ’encode’ each independent set I ∈ I(G) with a subset
S(I) ⊆ I, which we will call the fingerprint of I. S will be small, but also crucially will have the
property that knowing that I has a fingerprint S(I) = S will be sufficient to guarantee that I
avoids a ’large’ subset of V(G), in fact a positive proportion. Hence, there is some set C(S) of
size at most (1− δ)v(G) such that every I with S(I) = S is contained in C, and we take these
C as our containers.

We will construct the fingerprint of each I using a simple, deterministic algorithm. During
the algorithm we will maintain a partition of V (G) = A ∪ S ∪X where A is the set of ‘active’
vertices, S is the current version of the fingerprint, and X is the set of ‘excluded’ vertices, which
are not in I. We start with A = V (G) and S = X = ∅.

We first define an order on V (G), called the max-degree order, by letting v1 be the vertex of
maximum degree in G, then v2 be the vertex of maximum degree in G[V \ {v1}], and so on, so
that for every i ∈ [n], vi is the vertex of maximum degree in G[{vi, . . . , vn}].

As long as |X| ≤ δv(G) we repeat the following steps:

1. Let v be the first vertex of I in the max-degree order on G[A].

2. Move v into S.

3. Move the neighbours of v into X.

4. Move the vertices preceding v in the max-degree order on G[A] into X.

5. Remove the new vertices of S ∪X from A.

The algorithm will terminate when |X| > δv(G) or I ∩ A = ∅, let A(I), S(I) and X(I) be
the final values of A,S and X. We claim that S(I) will have the desired properties to be the
fingerprint.

Firstly, we claim that if I, I ′ ∈ I(G) are such that S(I) = S(I ′), then also A(I) = A(I ′).
Indeed, it is easy to see inductively that the vertices must have been added into S(I) and S(I ′)
in the same order during the algorithm, and hence the same vertices were moved into X(I) and
X(I ′) at each stage, and so also A(I) = A(I ′).

Given any S such that there is some I ∈ I(G) with S(I) = S, let us define the container of
S to be C(S) = A(I) ∪ S if the algorithm terminated since |X| > δv(G) or and S otherwise.
Note that by the above this gives at most two different containers for each S. Let us further
define

C = {C(S) : S = S(I) for some I ∈ I(G)}.

Let us first show that |S(I)| ≤ dτv(G)e for each I ∈ I(G), which will then imply the bound
on |C|. To see this, we claim that whenever a vertex v is added to S in the algorithm at least
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min{d2 , δV (G)}, which we will assume to be d
2 for simplicity, vertices are added to X. Note that

in this case, after dτv(G)e many vertices have been added to S,

|X| ≥ dτv(G)ed
2
≥ δv(G).

Hence, the algorithm must stop before dτv(G)e vertices have been added to S.

So, let us show that we always add at least d
2 vertices to X.

Suppose that |S| ≤ τv(G), |X| ≤ δv(G) and we just added a vertex v to S. If the set of
vertices which preceded v in the max-degree order on G[A], which we call W is large, then we
are happy, so we may assume that |W | ≤ d

2 . However, then

e(G[A \W ]) ≥ e(G)−
(
(τ + δ)v(G) +

d

2

)
∆(G)

≥ e(G)−
(
(τ + 2δ)v(G)

)
cd

≥ e(G)

(
1− 4cδ

(
1 +

1

d

))
≥ e(G)

2

if δ is sufficiently small.

Then, since v is a vertex of maximum degree in G[A \W ] it follows that v has at least d
2

neighbours in G[A], which are all moved to X, as required.

Then, if the algorithm terminated when |X| ≥ δv(G), it follows that |C(S)| = |A(I)∪S(I)| =
|V (G) \X(I)| ≤ (1− δ)v(G) for each S.

Conversely, if we stopped when A ∩ I = ∅ then C(S) = S(I) = I and by assumption
|S(I)| ≤ dτv(G)e ≤ (1− δ)v(G).

The graph container lemma is originally due to Kleitman and Winston and it, as well as
variants of its algorithmic proof already have a large number of interesting applications.

We can now use Lemma 5.10 in order to prove Lemma 5.1. The approach is similar, but
instead of removing the neighbourhood of a vertex v when it is placed in S, we will need to keep
track of the graph which is induced by edges containing v. If this graph ever gets too large, we
can use Lemma 5.10 to find a container for I in this graph, otherwise we find as before that we
exclude sufficiently many vertices from I in each step that we find a suitable container before
the fingerprint gets too large.

Proof of Lemma 5.1. Given I ∈ I(H) we will again algorithmically determine a fingerprint S(I).
In order to do so we will maintain a set S, a 3-uniform hypergraph A of ‘available’ edges of H
and a graph G of ‘forbidden’ pairs in V (H). We start with A = H and S = E(G) = ∅. As long
as |S| < b 1

2
√
d
v(H)c and V (A) ∩ I 6= ∅ we repeat the following steps:

1. Let u be the first vertex of I in the max-degree order on A.
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2. Move u into S.

3. Move the edges N(u) = {vw : uvw ∈ E(A)} into G.

4. Remove u from V (A), and also all the vertices preceding u in the max-degree order on A.

5. Remove from V (A) every vertex whose degree in G is larger than c
√
d.

6. Remove from E(A) every edge which contains an edge of G.

Where the max-degree order on a hypergraph is defined in the obvious way. The algorithm
terminates when either |S| ≥ b 1

2
√
d
cv(H) or V (A) ∩ I 6= ∅ and we set A(I) = A, S2(I) = S and

G(I) = G.

The reason we need to remove the vertices of high degree in G from V (A) is we want to be
able to apply the graph container lemma to G(I), and so we will need that ∆(G(I)) can be
bounded above.

As before, we note that for any two I, I ′ ∈ I(G) if S2(I) = S2(I ′) then also G(I) = G(I ′)
and A(I) = A(I ′). Hence, if S is such that there exists an I ∈ I(G) with S2(I) = I we can
unambiguously define G(S) = G(I) and A(S) = A(I).

Let us fix I ∈ I(H) and let S2 = S2(I). Suppose first that

e(G(S2)) ≥
√
dv(H)

32c
and ∆(G(S2)) ≤ 2c

√
d.

So, G(S2) has average degree d ≥ 3
√
d

32c and maximum degree ∆ ≤ 64
3 c

2d. Note that I is
independent in G(S2), so we can apply the graph container algorithm to I, giving us some

δ > 0 such that we obtain a fingerprint S1(I) with |S1| < v(H)√
d

, and a container C for I with

|C| ≤ (1− δ)v(H), where C is a function only of S1 ∪ S2.

We may assume then that either

e(G(S2)) <

√
dv(H)

32c
or ∆(G(S2)) > 2c

√
d.

Note however, that the second cannot hold, since the degree of a vertex in G increases by at
most ∆(N(u)) ≤ ∆2(H) ≤ c

√
d in each step of the algorithm, and once a vertex of G has degree

larger than c
√
d we remove it from V (A) (and hence no more edges incident to it are added to

G later in the algorithm). Let Y be the set of vertices we removed for this reason.

Note that at any stage of the algorithm |Y | must be small. Indeed, if at any point |Y | ≥ v(H)
16c

then

e(G(S2)) ≥ |Y |c
√
d

2
≥
√
dv(H)

32
≥
√
dv(H)

8c
,

since we may assume that c > 4, contradicting our assumption.

We would like to show that we remove many vertices from A which are not in Y during
the algorithm, so that we can take C(I) := V (A) ∪ S2 ∪ Y , however if our algorithm doesn’t
run for very long before terminating then this won’t be true. So, if the algorithm terminates
because |S| ≥ v(H)

2
√
d

we will take C(I) = C(S2) := V (A) ∪ S2 ∪ Y . Conversely if the algorithm
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terminates because V (A) ∩ I = ∅ we will take C(I) = C(S2) := S2 ∪ Y . Let us show that these
are appropriate choices for C.

Clearly if we terminate because V (A) ∩ I = ∅ then |S2| ≤ v(H)

2
√
d

and by the above comment

|Y | ≤
√
dv(H)
8c and hence in this case

|C(S2)| ≤ v(H)

2
√
d

+
v(H)

16c
≤ (1− δ)v(H).

Furthermore it is clear that in this case S2(I) ⊆ I ⊆ Y ∪ S2.

So, we may assume that our algorithm runs until |S| ≥ v(H)

2
√
d

. We claim that at some point

in the algorithm at least v(H)
16c vertices other than those in Y have been removed from A. Since

the vertices we remove from V (A) are either in S, in Y or not in I, it follows that

|V (A) ∪ S2 ∪ Y | ≤ V (H)− v(H)

16c
+ |S2| ≤ v(H)

(
1− 1

16c
+
√
δ

)
≤ (1− δ)v(H).

Furthermore it is again clear that S2(I) ⊆ I ⊆ C(I) = V (A) ∪ S2 ∪ Y .

So, let us assume for contradiction that at each stage in the algorithm at most v(H)
16c vertices

other than those in Y have been removed from A. We claim that under all these assumptions
we add at least d

4 edges to G in each step, which will eventually contradict our assumption that

e(G(S2)) <
√
dv(H)
32c .

Indeed, at each step in the algorithm we may assume that e(G) <
√
dv(H)
32c , |Y | < v(H)

16c and

at most v(H)
16c other vertices have been removed from A. In this case, since ∆1(H) ≤ cd and

∆2(H) ≤ c
√
d, we have

e(A) ≥ e(H)− v(H)∆1(H)

16c
− |Y |∆1(H)− e(G)∆2(H)

≥ e(H)− v(H)d

8
− d

32
v(H)

≥ v(H)d

6
.

Now, if we remove a vertex u at this step in the algorithm at most v(H)
16c vertices lie before it in

the max-degree order on A and so the degree of u must be at least d
4 , otherwise

e(A) ≤ 1

3

(
v(H)

16c
∆1(H) + v(H)

d

4

)
<
v(H)d

6
.

Hence, the vertex u that we remove in the next step will have degree at least d
4 , and so will add

at least d
4 edges to G in this step.

However, since the algorithm will terminated when |S| ≥ v(H)

2
√
d

it follows that

e(G(S2)) ≥ 1

2

v(H)

2
√
d

d

4
≥ v(H)

√
d

16
≥ v(H)

√
d

32c
,

contradicting our assumption.
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We note that actually we prove a slightly stronger statement than claimed in Lemma 5.1

Lemma 5.11. For every c > 0 there exists δ > 0 such that if H is a 3-uniform hypergraph with
average degree d ≥ δ−1 and

∆1(H) ≤ cd and ∆2(H) ≤ c
√
d,

then there exists a collection C of subsets of V (H) and a function f : 2V (H) → C such that such
that

(a) for every I ∈ I(H), there exists S ⊆ I with |S| ≤ v(H)√
d

and I ⊆ f(S); and

(b) |C| ≤ (1− δ)v(H) for every C ∈ C.

Let us show how we can use this to remove the unnecessary logarithmic terms in our pre-
vious proofs. Firstly we can use it, in precisely the same way as before to show the following
strengthened container theorem for triangle-free graphs.

Theorem 5.12. For each ε > 0 there exist C > 0 such that for each n ∈ N there exists a
collection Gn of graphs on n vertices and a function f : 2E(Kn) → Gn such that

(a) For every triangle-free graph H on n vertices there is a subgraph S ⊆ H with

e(S) ≤ Cn
3
2 and H ⊆ f(S); and

(b) Each G ∈ Gn contains at most εn3 triangles.

Using this we can give a slight improvement to our proofs of Theorems 5.4, 5.6 and 5.8. We
will just show the first and leave the others as exercises.

Proof of Theorem 5.4. We us apply Theorem 5.12, with a small γ > 0 which we will choose
later, to get a family of containers Gn. Then for any triangle-free H there is some S ⊆ H with
e(S) ≤ Cn

3
2 and a graph f(S) ∈ Gn such that H ⊆ f(S). Since f(S) contains at most γn3

triangles, it follow from Lemma 5.5 that if γ is small enough then e(f(S)) ≤
(

1
2 + α

2

) (
n
2

)
.

Let S be the set of fingerprints S obtained from the theorem. If there is some triangle-free
H ⊆ G(n, p) with e(H) ≥

(
1
2 + α

)
p
(
n
2

)
then there is some S ∈ S such that S ⊆ H ⊆ f(S), and

so G(n, p) contains at least e(H)− e(S) many edges of f(S)− S.

However, for any fixed S the probability that this happens is at most

P (Bin (e(f(S)), p) ≥ e(H)− e(S)) ≤ P
(

Bin

((
1

2
+
α

2

)(
n

2

)
, p

)
≥
(

1

2
+ α

)
p

(
n

2

)
− Cn

3
2

)
≤ e−Ω(pn2).

62



So, if we let Y be the number of S ∈ S such that S ⊆ G(n, p) and G(n, p) contains at least
m− e(S) edges of f(S) \ E(S), then

E(Y ) ≤
∑
S∈S

pe(S)e−Ω(pn2)

≤
Cn

3
2∑

k=1

pk
((n

2

)
k

)
e−Ω(pn2)

≤
Cn

3
2∑

k=1

(
en2p

2k

)k
e−Ω(pn2)

= o(1).

since p = ω
(

1√
n

)
.

5.4 A general container lemma

These methods extend to more general hypergraphs, and the following container lemma for k-
uniform hypergraphs was proven independently by Balogh, Morris and Samotij, and Saxton and
Thomason.

Lemma 5.13. For every k ∈ N and c > 0 there exists δ > 0 such that if H is a k-uniform
hypergraph and τ ∈ (0, 1) is such that

∆`(H) ≤ cτ `−1 e(H)

v(H)

for every 1 ≤ ` ≤ k, then there exists a collection C of subsets of V (H) and a function f :
2V (H) → C such that

(a) for every I ∈ I(H), there exists S ⊆ I with |S| ≤ τv(H) and I ⊆ f(S); and

(b) |C| ≤ (1− δ)v(H) for every C ∈ C.

The proof is similar to that for the 3-uniform case, but the details are much more technical.
Using similar ideas to the previous section we can extend some of the ideas from the previous
section to H-free graphs.

Namely, if we look at the hypergraph which encodes the edge sets of copies of H in E(Kn),
then one can check that it satisfies the bounded degree condition in Lemma 5.13 with τ =

n
− 1
m2(H) where m2 is the 2-density of H,

m2(H) = max

{
e(F )− 1

v(F )− 2
: F ⊆ H, v(F ) ≥ 3

}
.

Then, using Lemma 5.13 one can prove a container theorem for H-free graphs in the vein of
Theorem 5.12. Combining this with a suitable supersaturation result it is possible to give the
following sparse random version of the Erdős-Stone-Simonivits theorem
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Theorem 5.14. For every graph H with ∆(H) ≥ 2 and every δ > 0 there exists C > 0 such

that if p ≥ Cn−
1

m2(H) , then whp every subgraph G ⊆ G(n, p) with

e(G) ≥
(

1− 1

χ(H)− 1
+ δ

)
p

(
n

2

)
contains H as a subgraph.

However, since the ideas are very similar to the previous section, we will instead give a dif-
ferent application of the general hypergraph container lemma, to finding arithmetic progression
in random susbets of sparse subsets of the integers.

A particularly well-known result from extremal combinatorics is Szemerédi’s Theorem on
arithmetic progressions.

Theorem 5.15. For every integer k ≥ 3 and δ > 0 there is an n0 ∈ N such that if n ≥ n0 and
A ⊆ [n] is such that |A| ≥ δn then A contains a k-term arithmetic progression.

Given p ∈ [0, 1] let us denote by [n]p the random subsets of [n] given by including each integer
independently with probability p. If p is very small, we shouldn’t expect [n]p to contain any
arithmetic progressions of length k, indeed the expected number of such progressions can be
bounded above by pkn2. However, if this is much smaller than pn then by the alteration method
we can easily find a subset of [n]p of very large size (in terms of pn) which doesn’t contain
any k-term arithmetic progression. Hence we cannot have any hope of finding a sparse random
version of Szemerédi’s theorem if n2pk � np, or in other words we need p to be at least around

n−
1

k−1 . This however is the only obstruction, as shown by the following theorem, independently
proven by Conlon and Gowers, and Schacht.

Theorem 5.16. For every integer k ≥ and δ > 0 there exists C > 0 such that if p ≥ Cn−
1

k−1 ,
then with high probability every subset A ⊆ [n]p of size |A| ≥ δpn contains a k-term arithmetic
progression.

We will deduce this theorem as a corollary of the following counting result.

Theorem 5.17. For every integer k ≥ 3 and every β > 0 there exists C > 0 and n0 ∈ N such

if m ≥ Cn1− 1
k−1 and n ≥ n0, then there are at most(

βn

m

)
many m-subsets of [n] which contain no k-term arithmetic progression.

Assuming this result, Theorem 5.16 follows easily.

Proof of Theorem 5.16. Given m ∈ N, let Ym denote the number of m-subsets of [n]p which
contain no k-term arithmetic progression. Let β = δ

e2
, and let C be the constant given by

Theorem 5.17. If p ≥
(
C
δ

)
n−

1
k−1 , then m := δnp ≥ Cn1− 1

k−1 and so it follows from Theorem
5.17 that there are at most (

βn

δnp

)
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many δnp-subsets of [n] which contain no k-term arithmetic progression.

Hence

P(Yδnp ≥ 1) ≤ E(Yδnp) ≤
(
βn

δnp

)
pδnp ≤

(
eδnp

e2δnp

)δnp
= e−m.

In other words, with high probably [n]p doesn’t contain any subsets of size δnp which don’t
contain any k-term arithmetic progression, and so every subset of size δnp contains a k-term
arithmetic progression.

So, it remains to prove Theorem 5.17. We will want to apply Lemma 5.13 to the k-uniform
hypergraph which encodes k-term arithmetic progressions in [n]. More precisely we let Hk be
the hypergraph with V (Hk) = [n] and

E(Hk) =
{
e ∈

(
[n]

k

)
: e = {a, a+ d, . . . , a+ (k − 1)d} for some a, d ∈ [n]

}
.

We note that e(Hk) = Θ(n2), ∆1(Hk) = O(n), and ∆`(Hk) = O(1) for any ` ≥ 2, where the

implicit constants might depend on k. Hence if we let τ = n−
1

k−1 then we have that

� ∆1(Hk) = O(n) ≤ cτ0 e(Hk)
v(Hk) = cΘ(n) if c is sufficiently large;

� ∆`(Hk) = O(1) ≤ cτ `−1 e(Hk)
v(Hk) = cn−

`−1
k−1 Θ(n) for any 2 ≤ ` ≤ k if c is sufficiently large.

Hence we can apply Lemma 5.13 with τ = n−1 1
k−1 . The final ingredient to the proof is again a

supersaturation result for Szemerédi’s Theorem, which can be deduced from the original via a
simple averaging argument.

Theorem 5.18. For every ε > 0 there exists δ > 0 and n0 ∈ B such that if n ≥ n0, then every
subset A ⊆ [n] with |A| ≥ εn contains at least δn2 k-term arithmetic progressions.

Proof of Theorem 5.17. Let us set ε = β
2 . We claim that there exist a family A ⊆ 2[n] and a

function f : 2[n] → A such that

(a) Each A ∈ A is of size at most εn; and

(b) For every set B ⊆ [n] which does not contain a k-term arithmetic progression there exists
a subset S ⊆ B with

|S| = O
(
n1− 1

k−1

)
and B ⊆ f(S).

Indeed, let us apply Lemma 5.13 to Hk with τ = n−
1

k−1 with a suitable value of c. We obtain
a family of fingerprints and containers such that for each B which doesn’t contain a k-term

arithmetic progression we have S1 = S1(B) ⊆ B and C1 = C1(S) ⊇ B with |S1| ≤ n1− 1
k−1 and

|C1| ≤ (1− δ)n.
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We then iterate: supposing we have such sets St and Ct for each B with |St| ≤ tn1− 1
k−1 and

|Ct| ≤ (1 − δ)tn. If |Ct| ≤ εn, then we place Ct in A and set f(St) = Ct, otherwise we apply

Lemma 5.13 to Hk[Ct] with τ = n−
1

k−1 and a suitable value of c = c(k, ε).

We can do this because e(Hk[Ct]) = Θ(n2) by Theorem 5.18, since |Ct| > εn by assump-
tion, and so our previous calculations show the assumptions of Lemma 5.13 are satisfied if c is
sufficiently large.

We obtain, for every subset B of Ct which doesn’t contain a k-term arithmetic progression a
fingerprint S′t+1 ⊆ B and a container Ct+1 ⊇ B with |Ct+1| ≤ (1− δ)|Ct| ≤ (1− δ)t+1n. Setting

St+1 = St ∪ S′t+1 ⊆ B we have that |St+1| ≤ |St|+ n1− 1
k−1 ≤ (t+ 1)n1− 1

k−1 .

Since δ only depends on c, ε and k after a constant number of steps we have that (1− δ)t ≤ ε
and so |Ct| ≤ εn. This gives us the family claimed.

Let S be the collection of fingerprints S for each k-term arithmetic progression free set B, and

let C be a sufficiently large constant so that every S ∈ S has size at most εCn1− 1
k−1 . Then, for

every m ≥ Cn1− 1
k−1 the number of subsets ⊆ [n] of size m containing no arithmetic progression

is at most ∑
S∈S

(
|f(S)|
m− |S|

)
≤
∑
s≤εm

(
n

s

)(
εn

m− s

)

≤
∑
s≤εm

(en
s

)s( m

εn−m

)s(εn
m

)

≤
∑
s≤εm

(
2em

εs

)s(εn
m

)
.

Since by Szemerédi’s theorem we may assume that m = o(n). Then, since the function
x 7→

( y
x

)x
is increasing on (0, ye ), it follows that the right hand side is at most

∑
s≤εm

(
2em

εs

)s(εn
m

)
≤ m

(
2e

ε2

)εm(εn
m

)
≤
(
βn

m

)
where the final inequality follows since β = 2ε, and so(

εn

m

)
≤ 2−m

(
βn

m

)
.
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6 Talagrand’s Inequality

Other concentration equalities that we have considered, like the Azuma-Hoeffding inequality,
gave us an exponentially small bound on the probability of deviations from the mean of suitably
well behaved random variables. Our notion of suitably well behaved was basically that it was
close, or bounded by, some random variable on a product space where in each co-ordinate
the random variable was bounded. However the Azuma-Hoeffding inequality required that the
deviations we considered be at least as large as the square root of the dimension of this product
space. In many cases the random variables we are interested in will have large expectation, so
we might hope to show that they are concentrated about their mean, but this expectation is
much smaller than the dimension of the product space that they live in, and so the standard
concentration inequalities do not give an effective bound on the tail probabilities. In this case,
there is an inequality of Talagrand that can be useful for proving concentration.

We will state just a special case of the equality, without proof, in a form which is useful for
applications. Let us first briefly formally introduce the notion of a product space, which we will
do only for finite probability spaces for simplicity. The case for general probability spaces is
similar.

Definition. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be finite probability spaces. We let

Ω =

n∏
i=1

Ωi = {(ω1, ω2, . . . , ωi) : ωi ∈ Ωi for all i ∈ [n]}

be the product of the sets Ωi and define a probability measure P on 2Ω by defining the probability
of elementary events to be

P((ω1, ω2, . . . , ωi)) =

n∏
i=1

Pi(ωi)

and extending it to 2Ω in the obvious way. Then the product space (of {(Ωi,Σi,Pi) : i ∈ [n]})
is the probability space (Ω, 2Ω,P).

We note that, given a random variable on a product space, there is a a natural martingale
associated with this random variable given by ‘exposing’ each co-ordinate in turn, the edge and
vertex exposure martingales being examples of this.

Talagrand’s inequality is a very general inequality about the concentration of measure in
product spaces. We consider a generalisation of the Hamming distance. This counts the number
of co-ordinates in which two ω, ω′ ∈ Ω differ. In other words, the distance is

∑
i : wi 6=w′i

1. We
can take a weighted version of this and consider, for any unit vector α ∈ Rn the α-Hamming
distance between ω and ω′ to be

dα(ω, ω′) =
∑

i : ωi 6=ω′i

αi.

Given a set A ⊂ Ω and a point ω for any α we can consider the α-Hamming distance between
ω and A.

dα(ω,A) = inf{d(ω, ω′) : ω′ ∈ A}.
We will think of ω as being far from A if it’s far in some α-Hamming distance, with α a unit
vector. That is, we define

d(ω,A) = sup
|α|=1

dα(ω,A).
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Talagrand’s inequality is then the following

Theorem 6.1 (Talagrand’s Inequality). Let {(Ωi,Σi,Pi) : i ∈ [n]} be probability spaces and let
(Ω,Σ,P) be their product. If A,B ∈ Σ are such that d(ω,A) ≥ τ for all ω ∈ B, then

P(A)P(B) ≤ e−
τ2

4 .

Note that we can vary α for different points ω ∈ B, so it doesn’t even have to be ‘uniformly’
far from A. An equivalent formulation is to say that we are bounding P(A)P(At) where Aτ =
{ω : d(ω,A) ≥ τ}.

This doesn’t look a lot like the tail estimates we have from earlier in the course, however
with not too much work one can deduce the following as a corollary, which we may sometimes
refer to also as Talagrand’s inequality.

First let us make a few definitions

Definition. A random variable X : Ω → R is c-Lipschitz if changing just one co-ordinate can
change the value of X by at most c. Given some function f : N → N we say that X is f -
certifiable if whenever X(ω1, ω2, . . . , ωn) ≥ s there is a subset I ⊂ [n] of size |I| = f(s) such that
X is greater than s on the entire subspace

{(ω′1, ω′2, . . . , ω′n) : ω′i = ωi for all i ∈ I}.

To put it in words, X is f -certifiable if, whenever X takes a value bigger than s, you can
verify this by looking at just f(s) of it’s co-ordinates. Talagrand’s inequality tells us that, when
a c-Lipschitz random variable is f -certifiable for a suitably small f , then it is highly concentrated
about its median.

Corollary 6.2. Let X be a c-Lipschitz random variable which is f -certifiable and let m be the
median of X (that is m is the unique real number such that P(X > m) ≤ 1

2 and P(X < m) ≤ 1
2).

Then for any t ≥ 0

P(X ≤ m− t) ≤ 2e
− t2

4c2f(m) and P(X ≥ m+ t) ≤ 2e
− t2

4c2f(m+t) .

Proof. Let us consider the two sets

A = {ω : X(ω) ≤ m− t} and B = {ω : X(ω) ≥ m}

Since P(B) ≥ 1/2 by definition, if we can show that d(ω,A) ≥ τ for all ω ∈ B for some τ , then
we can use Theorem 6.1 to get a bound on the probability of A.

However, since X is f -certifiable, for every ω ∈ B there is some set I ⊂ [n] of size f(m)
such that X(ω′) ≥ m for every ω′ which agrees with ω on I. Then, since every ω′ ∈ A has
X(ω) ≤ m− t and changing the value of one co-ordinate can change the value of X by at most
c, it follows that every ω′ ∈ A must disagree with ω in at least t/c of the co-ordinates in I.

Hence, if we take α to be the unit vector with αi = 1/
√
|I| for all i ∈ I and 0 otherwise,

it follows that every ω has α-Hamming distance at least t/c
√
f(m) to every ω′ ∈ A. Hence,

d(ω,A) ≥ t/c
√
f(m).
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Hence, applying Theorem 6.1 tells us that

P(X ≤ m− t)P(X ≥ m) ≤ e−
t2

4c2f(m)

and so, since by definition P(X ≥ m) ≥ 1/2 we have that

P(X ≤ m− t) ≤ 2e
− t2

4c2f(m) .

The other inequality follows in a similar fashion.

Note that the two tail estimates are not necessarily symmetric. Looking at Corollary 6.2,
we see that we can get exponentially good bounds for the tail estimates when t >>

√
f(m).

Most importantly this doesn’t necessarily depend on the dimension of the product space we
live in, and so, when f(m) is small compared to n, we will get much better bounds than the
Azuma-Hoeffding inequality would give us.

Also, this theorem talks about a variable being concentrated about its median rather than
its mean, however, as the following lemma shows, in a lot of cases one can show the median
must be close to the expectation.

Lemma 6.3. Let {(Ωi, 2
Ωi ,Pi) : i ∈ [n]} be probability spaces and let (Ω, 2Ω,P) be their product.

Let X be a c-Lipschitz, f -certifiable random variable with f(s) = rs and let m be the median of
X. Then

|E(X)−m| ≤ 20c
√
rm.

Proof. Clearly we have that
|E(X)−m| ≤ E(|X −m|)

Let us split the possible values of |X −m| into intervals of length c
√
rm. It follows that

E(|X −m|) ≤
∞∑
k=0

c
√
rm(k + 1)P(|X −m| ≥ kc

√
rm).

We can however apply Corollary 6.2 to each summand, with t = kc
√
rm to see that, since t ≤ m

P(X ≤ m− kc
√
rm) ≤ 2e−

k2

4

and

P(X ≥ m+ kc
√
rm) ≤ 2e

− k2m
4(m+t) ≤ 2e−

k2

8

and so

≤ 40c
√
rm

Since
∑∞

k=0(k + 1)e−
k2

8 < 10.
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6.1 Longest Increasing Subsequence

Suppose we pick a sequence x1, x2, . . . , xn ∈ [0, 1] independently and uniformly at random. If
we put the sequence in increasing order, xi1 < xi2 < . . . < xin , this defines a permutation of [n],
and it is not hard to check that the distribution we get by picking a permutation in this way is
also uniform.

Let us consider the random variable X which counts the longest increasing subsequence from
this sequence. What can we say about this random variable?

Well, given some ordered subset of the xi, {xi1 , xi2 , . . . xik}, the probability that this forms
an ordered subsequence is simply 1/k! by symmetry. So the expected number of increasing
sequences of length k is just

(
n
k

)
/k! and so by Markov’s inequality , if we let Xk be the number

of increasing sequences of length k, we have that

P(X ≥ k) = P(Xk ≥ 1) ≤ E(Xk) =

(
n
k

)
k!
≤
(en
k

)k ( e
k

)k
=

(
e
√
n

k

)2k

.

Therefore if the median is the number m such that P(X ≥ m) = 1/2, we have that m ≤ 3
√
n,

since we know that

P(X ≥ 3
√
n) ≤

(e
3

)6
√
n
< 1/2.

However, a classical theorem of Erdős and Szekeres tells us that if we let Y be the length of
the largest decreasing subsequence then we always have that XY ≥ n (we have to be a little
careful since this talks about non-decreasing and non-increasing subsequences, but with high
probability no two xi take the same value). However, by symmetry we have that X and Y have
the same distribution and so, since P(X ≤ 3

√
n) ≥ 1/2 we must have that P(Y ≥ 1

3

√
n) ≥ 1/2

and so the median of X must satisfy

1

3

√
n ≤ m ≤ 3

√
n.

Now, the random variable X is clearly 1-Lipschitz, changing the value of any one xi can
only change the length of the largest increasing subsequence by 1, and also we have that X is
f -certifiable with f(s) = s. Indeed, to verify that X ≥ s we can simply look at the values of the
xi in an increasing subsequence of length s. Therefore by Theorem 6.1 we have

P(X ≤ m− t) ≤ 2e−
t2

4m andP(X ≥ m+ t) ≤ 2e
− t2

4(m+t) .

Since m ∼
√
n we can take t to be slighty larger than n1/4, say t = n1/4 log (n), to see that

with high probability X must lie in the interval [m− t,m+ t].

Let us compare this to the bound we would get from applying Azuma-Hoeffding. Here we
would be considering the exposure martingale associated with X by exposing the values of each
xi in turn. Since the function is 1-Lipschitz, and the values of the xi are independent, it follows
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by a standard argument that the associated martingale satisfies |Xi −Xi−1| ≤ 1 and so by the
Azuma-Hoeffding inequality we have that

P(X ≥ E(X) + t) ≤ e−
t2

2n and P(X ≤ E(X)− t) ≤ e−
t2

n .

So in order to get tight concentration we would need to take t >> n1/2, which is not only
much worse than what Talagrand can give, it’s not especially useful since it follows from Lemma
6.3 that |E(X)−m| = O(n

1
4 ) and so E(X) ∼ m ∼

√
n.

6.2 Chromatic Number of Graph Powers

Definition. Given a graph G and x, y ∈ V (G) let us define the distance between x and y,
distG(x, y), to be the length of the shortest path between them. Given a graph G the kth power
of G, Gk is defined to be the graph with

V (Gk) = V (G) and E(Gk) = {(x, y) : distG(x, y) ≤ k}.

Suppose we have a graph G with maximum degree ∆(G) = d. What can we say about the
chromatic number of Gk?

A simple application of the greedy algorithm tells us that we can colour any graph H with
∆(H) + 1 colours, and since ∆(Gk) ≤ dk we have that χ(Gk) ≤ dk + 1. Brook’s theorem
tells us that for any graph which is not a cycle or complete, χ(H) beats this naive bound and
χ(H) ≤ ∆(H). This result has been improved, first by Kim to show that

Theorem 6.4. Let H be such that g(H) ≥ 5, then

χ(H) ≤ (1 + o(1))
∆(H)

log (∆(H))
.

and later Johansson showed

Theorem 6.5. Let H be such that g(H) ≥ 4 (that is, triangle-free), then

χ(H) ≤ O
(

∆(H)

log (∆(H))

)
.

Applying this to graph powers we see that, as long as G still has reasonably large girth
compared to k, then we get an improvement of a log factor over the naive bound for Gk as
well. The following result of Alon and Mohar tells us that if we fix g ≥ 3 and k, and allow the
maximum degree to be arbitrarily large, then there exist graphs achieving this bound.

Theorem 6.6. Let g ≥ 3 and k be fixed. Then for large enough d there exist graphs G with
g(G) ≥ g and ∆(G) ≤ d such that

χ(Gk) ≥ Ω

(
dk

log d

)
.
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Proof. We want to construct such a graph by picking a random graph G(n, p) for suitable n and
p. Let p = d

2n so that the expected degree of each vertex is ∼ d/2. We first want to make sure
that our graph satisfies the conditions claimed on ∆(G) and g(G), to do that we will use the
alteration method.

It is a simple application of the chernoff bound that, for each vertex v ∈ V

P(d(v) ≥ d) < e−
d

100 .

(where no attempt has been made to optimise the constant, none at all). So, if we let Nbad be
the number of vertices with degree larger than d we see that

E(Nbad) < ne−
d

100 .

Hence, by Markov’s inequality

P(Nbad > 100ne−
d

100 ) ≤ 1

100
.

Similarly if we look at the random variable C<g which counts the number of cycles of size < g,
we have that

E(C<g) =

g−1∑
i=1

(np)i =

g−1∑
i=1

(
d

2
)i < dg.

So again an application of Markov’s inequality tells us that

P(C<g > 100dg) <
1

100
.

Combining these two estimate we see that with probability at least 98/100, G(n, p) is such
that

Nbad < 100ne−
d
6 and C<g < 100dg

and so, since we are free to take n � d � g, we can remove a vertex from each small cycle
and delete all vertices of degree more than d to get a graph G′ with neither, which still has
(1− o(1))n vertices.

We want to get a bound on the chromatic number of G′k, and we will do so by bounding
above the size of the largest independent set in G′k. That is, since

χ(G′k) ≥ v(G′)

α(G′k)
≥ n

2α(G′k)

we will need to show that, with positive probability, even after the alterations we made

α(G′k) ≤ ckn
log (d)

dk

for some constant ck. For each subset U of that size we want to show that, even after we make
our alterations, there is still some edge in G′k inside U . To guarantee this we will show that with
a high probability we can find many vertex disjoint paths of length k between pairs of vertices in
U . Since each vertex we removed from the graph G(n, p) can be in at most one of these paths,
if there are sufficiently many we can conclude that U is still not independent in G′. So we will
prove the following auxiliary lemma.
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Lemma 6.7. Let G(n, p) be chosen with p as above, then for an appropriate choice of constant
ck the following holds: For every subset U ⊆ V (G) of size

|U | = ckn
log d

dk
= x

let P be the random variable which counts the maximum size of a family of paths of length k
which lie in G(n, p) such that both endpoints lie in U , all the internal vertices of the paths lie
outside of U , and no two paths share a vertex except in U . Then almost surely

P ≥
c2
kn(log d)2

2k+6dk
.

Proof. If we let P ′ be the random variable which just counts the number of paths of length k
satisfying the first two conditions we see that

E(P ′) =

(
x

2

)
(n− x)(n− x− 1) . . . (n− x− k + 1)pk

> c2
kn

2 (log d)2

d2k

nk−1

4

dk

2knk

=
c2
kn(log d)2

2k+2dk

If we let Q be the random variable which counts the pairs of paths which share an internal
vertex outside of U it is rather tedious, but elementary, calculation to show that the largest
contribution to Q comes from pairs of paths which share an endpoint and the neighbour of that
endpoint. The expected number of such pairs is at most

E(P ′)nk−2xpk−1 = E(P ′)
ck log d

2k−1d
<< E(P ′).

Therefore if we pick a random set of such paths, including each one with some fixed probability
q, the expected size of our collection is just qE(P ′) and the expected number of bad pairs is
q2E(Q) < q2E(P ′). Therefore by the alteration method we can find a collection such that when
we remove 1 path from each bad pair we still have at least (q − q2)E(P ′) left, and so we have
that, with q = 1/2

E(P ) ≥ 1

4
E(P ′) >

c2
kn(log d)2

2k+4dk
:= b.

If we define m to be the median of P we claim that m ≥ b/2. Indeed, if not, then both m and
20
√
km are less than b/2. However, since P counts the size of the largest set of paths of length

k satisfying certain conditions, including being edge disjoint, we have that P is 1-Lipschitz, that
is, changing any one edge can change P by at most 1. We also note that P is f -certifiable for
f(s) = ks. Hence, by Lemma 6.3

E(P ) ≤ m+ 20c
√
km < b

a contradiction.

Hence, since m ≥ b/2 it follows from Talagrands inequality that

P(P ≤ b/4) ≤ P(P ≤ m/2) ≤ 2e−
m

16k ≤ 2e−
b

32k .
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Therefore,

P(P ≤ b

4
) ≤ 2exp

(
−
c2
kn log (d)2

2k+9kdk

)
.

Therefore, for any fixed U , we’ve showed that the probability that U has less than b/4
appropriate paths (which we note is the claimed number in the statement of the lemma), can
be bounded above by this quantity. If we can show that this quantity is small compared to the
total number of U of size x, the we could conclude the result of the lemma by the union bound.
Now the total number of such sets is(

n

x

)
≤
(en
x

)x
=

(
edk

ck log d

) ckn log d

dk

≤ exp

(
ckkn(log d)2

dk

)
.

Therefore if we choose ck such that

c2
k

2k+9k
> 2kck

then with high probability for every such set U there will be at least the claimed number of
paths.

So, as we showed before, with probability at least 98/100, G(n, p) is such that

Nbad < 100ne−
d
6 and C<g < 10dg

and we also know that with high probability G(n, p) satisfies the conclusion of Lemma 6.7,
and hence with positive probability G(n, p) satisfies all three. Therefore there exists some graph
G′ satisfying all three conditions. From such a graph, let us delete a vertex from each cycle of
length less than g and delete each vertex of degree ≥ d. We therefore obtain a graph G such
that g(G) ≥ g and ∆(G) ≤ d and also

|G| ≥ n− 100(ne−
d
6 + dg) ≥ n

2
.

We also claim that α(Gk) ≤ x. Indeed, since G′ satisfied the conclusion of Lemma 6.7 we
know that each subset of V (G) of size x, when considered as a subset of V (G′), contained at
least

ckn log (d)2

2k+6dk

paths of length k, in G′, between vertices of U such that no internal vertices were inside U , or
in more than 1 path. Since we removed at most

100(ne−
d
6 + dg) <

ckn log (d)2

2k+6dk

vertices of G′ to form G, at least one of these paths is contained in G, and hence in Gk, U is
not independent.
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Therefore G is a graph with g(G) ≥ g and ∆(G) ≤ d and

χ(Gk) ≥ |Gk|
α(Gk)

≥ n

2x
= Ω

(
dk

log (d)

)
.
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7 Resilience

In Section 5 we considered problems of the following type: Given a p and a random graph
G(n, p) what is the largest subgraph not containing a triangle? Since adding edges to G(n, p)
only hurts this aim, another way to think of this question would be how many edges of G(n, p)
do we need to change to make it triangle-free. More generally, given a property P of graphs and
a fixed graph G we can ask how far in edit distance is G from P, that is, what is the smallest r
such that there exists a graph H on the same vertex set of with e(H) = r and G4H 6∈ P). We
call this the global resilience of G w.r.t P. If this number is large, then G satisfies P in some
way quite ‘robustly’; changing few edges of G will not ruin the property P.

However, for many global graph properties, such as connectedness or Hamiltonian, local
changes such as removing all edges adjacent to a fixed vertex can ruin them, giving a trivial
upper bound on the resilience of these properties. A more natural notion of ‘robustness’ to
consider seems to be bounding the size of the ‘local changes’ one cane make. That is, we consider
the smallest r such that there exists a graph H on the same vertex set of with ∆(H) = r and
G4H 6∈ P). We call this the local resilience of G w.r.t P.

As an illustrative example, consider the the case G = Kn, where P is an increasing property.
In this case the global resilience of Kn w.r.t P tells us the extremal number of edges in a graph
not in P, whereas the local resilience of Kn tells us the largest minimum degree of a graph not
in P.

In this section we will present some results about the local resilience of the random graph
G(n, p) w.r.t various properties, which we will from now on just call resilience for brevity. With
this is mind, given a graph property P we will write ∆P for the resilience of G(n, p) w.r.t P,
where we note that ∆P is a function of p.

7.1 Perfect Matchings

Recall that the threshold for the existence of a perfect matching in G(n, p) occurs at p̂(n) = logn
n

(assuming n is even, which we will in this section). If we let M be the property of containing a
perfect matching, how resilient will this property be above the threshold?

Well, an obvious upper bound for the resilience comes from the following construction: Divide
n into two parts X and Y of size n

2 − 1 and n
2 + 1 respectively. If we delete all the edges in

G(n, p)[Y ] then clearly there can be no perfect matching in the remaining graph. However, by
the Chernoff bounds, with high probability we delete (1 + o(1))np2 many edges incident to each
vertex and hence the local resilience w.r.t M is at most (1 + o(1))np2 . We will show that this is
in fact approximately the correct value.

Theorem 7.1. Suppose that n is even and that p = ω
(

logn
n

)
. Then with high probability in

G(n, p) (
1

2
− ε
)
np ≤ ∆M ≤

(
1

2
+ ε

)
np

for any constant ε > 0.
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Proof. By the comment before the proof it remains to show the lower bound. By monotonicity
of M we may assume that ε is sufficiently small, and furthermore we only need to consider
the effect of deleting edges on M. Let H be an arbitrary subgraph of Kn of maximum degree
(1

2 − ε)np and let G := G(n, p) \ E(H).

We first note that by the Chernoff bounds with high probability the minumum degree of
G(n, p) is at least (1− δ)np for any small δ > 0. Indeed, for each vertex v the probability that
d(v) ≤ (1− δ)np is at most

e
− (δnp)2

2np = e−Θ(np) = e−ω(logn) = o(n−2)

and so by the union bound with high probability every vertex has degree at least (1 − δ)np.
Hence with high probability the minimum degree of G = G(n, p)\E(H) is at least (1

2−δ+ε)np ≥
(1

2 + ε
2)np if we choose δ sufficiently small.

Also we note that with high probability the number of edges in G(n, p) between any two
disjoint subsets S, T ⊂ [n] of size |S| = |T | ≤ n

4 is at most

e(S, T ) ≤
(

1

4
+ γ

)
np|S|

for any small γ > 0.

Indeed, for any fixed S, t ⊆ [n] with |S| = |T | = r ≤ n
4 the expected number of edges between

S and T is r2p and since r ≤ n
4 we have that

|r2p−
(

1

4
+ γ

)
nrp| ≥ γnrp.

Hence by the Chernoff bounds

P
(
e(S, T ) ≥

(
1

4
+ γ

)
npr

)
≤ P

(
Bin(r2, p) ≥ r2p+ γnrp

)
≤ exp

(
− (γnrp)2

2
(
r2p+ γnrp

3

))
≤ exp

(
−γ2nrp

)
and hence the probability that there exist any such S and T is at most

n
4∑

r=1

(
n

r

)2

e−γ
2nrp ≤

n
4∑

r=1

(en
r

)2r
e−γ

2nrp

≤

n
4∑

r=1

(
n2e2−γ2np

r2

)r

≤

n
4∑

r=1

(o(1))r = o(1),

since p = ω
(

logn
n

)
4.
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Let us choose a random partition of [n] into two sets of size n
2 , X and Y and consider the

bipartite subgraph G[X,Y ] := G′ of G between X and Y .

We claim that with high probability in G′ dY (x) ≥
(

1
4 + ε

8

)
np for all x ∈ X and dX(y) ≥(

1
4 + ε

8

)
np for all y ∈ Y .

We note that, if we chose a bipartiton of [n] uniformly at random, then the degree of a vertex
x ∈ X to Y would be distributed as Bin(dG(v), 1

2) and so the probability that its degree is too
small would be o(n−2) by the Chernoff bounds, and the result would follow via the union bound.
However, the degree of x to Y is not quite binomially distributed, instead it has a hypergeometric
distribution with average d(v)

2 . However one can show that the Chernoff bounds also hold for
the hypergeometric distribution.

Hence there exists a partition X and Y such that the minimum degree of G′ is at least(
1
4 + ε

8

)
np. We claim that G′ satisfies Hall’s condition.

Suppose we have a subset S ⊂ X of size > n
4 such that |N(S)| < |S|. Then any subset

S′ ⊂ Y \ N(S) of size ≤ n
4 will also not satisfy Hall’s condition. Hence it will be sufficient to

show that Hall’s condition holds for all subsets of size ≤ n
4 .

So, let S ⊂ X be of size ≤ n
4 . By our assumption on G(n, p) there are at most(

1

4
+ γ

)
np|S|

many edges between S and any subset T ⊂ Y of size |S| (and so also of size ≤ |S|) in G(n, p),
and hence at most that many edges in G′. On the other hand, there are at least

e(S,N(S)) =
∑
s∈S

dG′(s) ≥
(

1

4
+
ε

8

)
np|S|

many edges from S to it’s neighbourhood. If we choose γ < ε
8 then it follows that |N(S)| ≥

|S|.

7.2 Chromatic Number

In this section we want to consider the ‘resilience’ of the chromatic number of G (n, p). Recall
that for a fixed p ∈ (0, 1) we know that with high probability χ(G(n, p)) ≈ n

logb n
where b = 1

1−p
and in fact the upper bound holds with probability

1− e−Ω(n2−o(1)). (7.1)

We will show that the property that χ ≈ n
logb n

is very resilient to local changes, although the
precise result we show will be difficult to express in terms of ∆P for a property P.

Theorem 7.2. Suppose H is a graph on [n] with ∆(H) = no(1). If p is constant then with high
probability

χ(G(n, p) ∪ E(H)) ≈ χ(G(n, p)).
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Remark 7.3. Rather informally we could think about the above as saying that ∆P ≥ no(1) where
P is the property that χ ≈ n

logb n
.

Proof. Let s = 20∆ log2 n. We randomly partition [n] into s sets V1, . . . , Vs of size n
s .

We note that, by (7.1) with high probability the chromatic number of each G(n, p)[Vi] is

χ (G(n, p)[Vi]) ≤
n
s

2 logb
n
s

≈ 1

s

n

2 logb n
,

where we used that ∆(H) = no(1).

If we just colour each of these colour classes independently, using a different set of ≈ 1
s

n
2 logb n

colours for each Vi, then clearly this is a proper colouring of G(n, p).

Furthermore, any edge of H that lies between different Vi and Vj is properly coloured, so we
only have to deal with the edges of H which lie inside some partition class.

Let Y denote the number of edge of H that have endpoints in the same partition class. We
have that E(Y ) ≤ ∆n

2s and so it follows that there exists some partition such that Y ≤ ∆n
s2 =

n
20 log2 n

.

However, if we let W be the set of endpoints of the edges in Y then |W | ≤ n
10 log2 n

. Via a

standard argument we will see that with high probability every set of this size spans ‘few’ edges
in G(n, p), and so has low degeneracy, the vertices can be linearly ordered so that each vertex
has ‘few’ neighbours appearing before it. Since the maximum degree of Y is also small, this is
also true in G(n, p)∪Y , and so it is easy to recolour this subgraph using ‘few’ additional colours.

More precisely we claim that with high probability every set of t ≤ n
10 log2 n

vertices in G(n, p)

span at most 2npt
log2 n

many edges.

Indeed, the probability there exists a set not satisfying this condition is at most

n
10 log2 n∑
t=1

(
n

t

)( (t
2

)
2npt

log2 n

)
p

2npt

log2 n

≤

n
10 log2 n∑
t=1

(en
t

)t(et2 logn

2npt

) 2npt

log2 n

p
2npt

log2 n

=

n
10 log2 n∑
t=1

en
t

(
et log2 n

2n

) 2np

log2 n

t

=

n
10 log2 n∑
t=1

(o(1))t = o(1)

and so it follows that every induced subgraph of G(n, p) size at most n
10 log2 n

has minimum

degree at most 2np
log2 n

, and so every such subgraph has degeneracy at most 2np
log2 n

.
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It follows that G(n, p)[W ] ∪ Y has degeneracy at most 2np
log2 n

+ ∆, and so can be properly

coloured using at most
2np

log2 n
+ ∆ + 1 = o

(
n

2 logb n

)
many new colours. Hence with high probability

χ(G(n, p) ∪ E(H)) ≤ (1 + o(1))
n

2 logb n
≈ χ(G(n, p)).

7.3 Hamiltonian Cycles

Recall that p̂ = logn
n is also a threshold function for the property of containing a Hamiltonian

cycle, which we will denote by H.

As before it is clear that the resilience for Hamiltonicty cannot be more than the resilience
for containg a perfect matching, and so

∆H ≤
(

1

2
+ ε

)
np

for any ε > 0 and any p = ω
(

logn
n

)
. Sudakov and Vu showed that in fact this is the correct

order for ∆H as long as p is sufficiently large, in particular p = ω
(

log4 n
n

)
. Eventually this was

extended to any p = ω
(

logn
n

)
by Sudakov and Lee, and even hitting time versions of this result

are now known.

We will prove a slightly weaker result, but one which uses a very different proof technique. The
previous results all used the Pósa rotation-extension technique, whereas, in order to consider the
problem in the directed setting, Ferber, Nenadov, Noever, Peter and Trujić used the absorbing
method.

Theorem 7.4. Let p = ω
(

log10 n
n

)
. Then with high probability in G(n, p)(

1

2
− ε
)
np ≤ ∆H ≤

(
1

2
+ ε

)
np

for any constant ε > 0.

Let’s give a rough description of the plan, before diving into the details.

Suppose we split [n] up into pieces of size ≈ n
log5 n

= t randomly. Similar arguments as in the

case of the resilience of perfect matchings will show that, with high probability, after removing
H we can still find matchings between any pair of parts.

If we arrange the parts in a line, and combine the matchings, we’ll cover almost all the
vertices of the graph by paths of length around log n. If we could join the endpoints {xi, yi} of
these paths together we could form a cycle on almost all the vertices of the graph.
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Whilst we can’t hope to do so directly, if we saved a small set of vertices at the beginning, call
it U , we might hope that if U is large enough then with high probability (even after removing H)
we can find disjoint paths linking the correct pairs {xi, yi} together which lie inside U . Indeed,
we will see that this will be likely as long as U is significantly larger than t, and so we can choose
U to still be much smaller than n.

This leaves us with a large cycle which covers everything but a small set X of remaining
vertices in U . In order to deal with these vertices we will find a small absorbing path: A path
P such that for any small subset of X ⊆ U there is a path P ′, with the same endpoints as P ,
whose vertex set is V (P ) ∪X. Then, if we remove P before we find our matchings, we can use
our matchings together with U to find a long path, with the same endpoints as P , which covers
every vertex but V (P ) ∪X, and then use the absorbing properties of P to complete this up to
a Hamiltonian cycle.

The details of this proof will however take a low of work. Let us first show that we may
assume that G(n, p)\E(H) is sufficiently ‘pseudo-random’, in a specific sense that we will make
precise, which will be sufficient for the rest of the proof to function.

7.3.1 A Pseudo-Random Condition

Let us say that a graph G = (V,E) with |V | = n is (n, α, p)-pseudo-random if

(P1) dG(v) ≥
(

1
2 + α

)
np for all v ∈ V ;

(P2) eG(S) ≤ |S| log3 n for all S ⊆ V with |S| ≤ 10 log2 n
p ;

(P3) eG(S, T ) ≤
(
1 + α

4

)
|S||T |p for all disjoint S, T ⊆ V with |S|, |T | ≥ log2 n

p .

Lemma 7.5. Let α > 0 and suppose that p ≥ log10 n
n . Let H be a subgraph of Kn with maximum

degree ∆(H) ≤
(

1
2 − 3α

)
np and let G = G(n, p) \ E(H). Then with high probability G is

(n, α, p)-pseudo-random.

Proof. Property (P1) follows from Chernoff’s inequality as before.

Furthermore, we will show that Properties (P2) and (P3) are true with high probability

even in G(n, p). Indeed, the probability that there exists some S ⊂ [n] with |S| ≤ 10 log2 n
p and

eG(n,p)(S) ≥ |S| log3 n is at most

10 log2 n
p∑

s=logn

(
n

s

)( (
s
2

)
s log3 n

)
ps log3 n ≤

10 log2 n
p∑

s=logn

(en
s

)s( eps2

s log3 n

)s log3 n

≤

10 log2 n
p∑

s=logn

(
en

s

(
10e

log n

)log3 n
)s

≤

10 log2 n
p∑

s=logn

(o(1))s = o(1).
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Hence (P2) holds with high probability in G(n, p) and so also in G ⊆ G(n, p).

Also, for any fixed S, T ⊆ [n] the Chernoff bounds imply that

P
(
eG(n,p)(S, T ) ≥

(
1 +

α

4

)
|S||T |p

)
≤ e−

α2|S||T |p
50 .

Hence the probability that there exists S, T ⊆ [n] with |S|, |T | ≥ log2 n
p and eG(S, T ) ≥

(
1 + α

4

)
|S||T |p

is at most ∑
s,t≥ log2 n

p

(
n

s

)(
n

t

)
e−

α2|S||T |p
50 ≤

(en
s

)s (en
t

)t
e−

α2stp
50

≤
∑

s,t≥ log2 n
p

e1−α
2tp

100 n

s

se1−α
2sp

100 n

t

t

≤
∑

s,t≥ log2 n
p

e1−α
2 log2 n

100 n

s

se1−α
2 log2 n

100 n

t

t

≤

 ∑
s≥ log2 n

p

e1−α
2 log2 n

100 n

s

s


2

= o(1)

Hence (P3) holds with high probability in G(n, p) and so also in G ⊆ G(n, p).

7.3.2 Pseudo-random implies Hamiltonian

So, for the rest of the proof we may assume that G := G(n, p) \H is (n, α, p)-pseudo-random.
From this point this will be the only property of the graph G that we will use, so we can forgot
how it was generated. We will also fix a parameter ` = 12 log n+ 3 for the rest of this section.

We randomly partition [n] into sets V1 ∪ V2 ∪ V3 ∪ V4 ∪ V5 such that

|V1| =
⌈

4 log6 n

p

⌉
and |V2| = |V3| = |V4| =

αn

6
,

so that
|V5| =

(
1− α

2

)
n− |V1| ≈

(
1− α

2

)
n.

V1 here will be our small set which allows us to link together our paths, and V2 ∪V3 ∪V4 will be
used to construct our absorbing path P .

For every v and every i the number of neighbours of v in Vi has a hypergeometric distribution,
but will be closely approximated by a binomial random variables Bin(dG(v), |Vi|n ) and so, since
np is sufficiently large and G is (n, α, p)-pseudo-random,

E(dVi(v)) =
|Vi|
n
dG(v) ≥

(
1

2
+ α

)
|Vi|p = ω(log n),
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and so by the Chernoff bounds, with high probability

dVi(v) ≥ (1 + o(1))

(
1

2
+ α

)
|Vi|p (7.2)

for each v ∈ [n] and i ∈ [5].

So, in order to follow our proof sketch we will need three parts: A connecting lemma which
lets us use V1 to join many pairs of vertices in G, an absorbing lemma which lets use build an
absorbing path for the remaining vertices in V1 using V2 ∪ V3 ∪ V4 and finally a covering lemma
that allows us to cover the remaining vertices with paths (although we won’t actually give this
step its own lemma).

The first is given by the following lemma, whose proof is lengthy and we will defer to the
next section.

Lemma 7.6. Let G be (n, α, p)-pseudo-random and let {ai, bi : i ≤ t} be a family of pairs of
vertices of G such that ai 6= aj and bi 6= bj for every distinct i, j (ai = bi is allowed), where

t ≥ log3 n
p . Let L =

⋃
i{ai, bi} and assume that K ⊆ [n] \ L is such that

(C1) |K| = ω(`t log t);

(C2) For every v ∈ K ∪ L we have dK(v) ≥ (1 + o(1))
(

1
2 + α

)
|K|p.

Then there exists a family of t internally disjoint paths P1, . . . , Pt such that Pi connects ai to bi
and V (Pi) \ L ⊆ K. Furthermore, each path is of length `.

Using this lemma we can also prove the existence of the absorbing path.

Lemma 7.7. There is a path P ∗ with V (P ∗) ⊆ V2∪V3∪V4 such that for every W ⊆ V1 there is
a path P ∗W such that V (P ∗W ) = V (P ∗) ∪W and such that P ∗ and P ∗W have the same endpoints.

Proof. Given a vertex x ∈ V1 we will say a subgraph A 3 x is an absorber for x if there are two
vertices s and t in A such that A contains both an (s, t)-path Px of length |A| − 1 which doesn’t
contain x (and so contains all other vertices in A), and an (s, t)-path P ′x of length |A| which
does contain x.

Let k, r be integers, we will build an absorber A of size 3 + 2kr for x as follows: We first take
a cycle C of length 4k + 3 which will consist of vertices

s, s2, t1, s3, t2, s4, . . . , s2k, t2k−1, t, t2k, s1, x, s

together with a set of 2k pairwise vertex disjoint (si, ti)-paths Pi, one for each i ∈ [2k], each of
which is of length r.

Clearly |A| = 3 + 2kr and we can see that

Px = s, s2, P2, t2, s4, P4, . . . .s2k, P2k, t2k, s1, P1, t1, s3, P3, t3, . . . , s2k−1, P2k−1, t2k−1, t

is a path of length |A| − 1 which avoids x and

P ′x = s, x, s1, P1, t1, s2, P2, t2, s3, . . . , s2k, P2k, t2k, t
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is a path of |A|. Hence A is an absorber for x. We will build our path P ∗ in two stages. Firstly
we will construct an absorber Ax for each x ∈ V1, such that Px ⊆ V2 ∪ V3 which are disjoint for
different x ∈ V1. Then, using Lemma 7.6 we will connect all of the paths Px into one long path
using vertices from V4.

To build the absorbers Ax we will again use the connecting lemma to build first the cycle C,
and then the set of paths Pi. Let us take k = 3dlog ne and r = `, so that the absorber consists
of a cycle C of length 4k + 3 = ` together with 2k = 6dlog ne disjoint paths, each of length `.

In order to find the cycle Cx for each x ∈ V1 we apply Lemma 7.6 to the set V2 (as K) with
t = |V1| and a family of pairs {(x, x) : x ∈ V1}. Note that

|V2| = Θ(n) = ω (`|V1| log |V1|) ,

since |V1| = Θ
(

log3 n
p

)
= o

(
n

log7 n

)
and so (C1) is satisfied and (C2) follows from (7.2). Hence

we can find a disjoint collection of cycles Cx of length ` inside V2, one containing each x ∈ V1.

Next, we use V3 to join, for each x ∈ V1 the pairs of designated vertices (sxi , t
x
i ) in Cx. To

do this we again apply Lemma 7.6, this time with K = V3, t = 2k|V1| and the set of pairs
{(sxi , txi ) : x ∈ V1, 1 ≤ i ≤ 2k}. Note that, as before

|V3| = Θ(n) = ω (`2k|V1| log 2k|V1|) ,

and so (C1) and (C2) are again satisfied. Hence we can find a disjoint collection of paths
{P xi : x ∈ V1, 1 ≤ i ≤ 2k|V1|} inside V3.

Finally, we will use V4 to build the path P ∗. Recall that each Ax has specified vertices sx

and tx. Let us take some arbitrary enumeration V1 = {x1, . . . , x|V1|}. We apply Lemma 7.6 with
K = V4, t = |V1| − 1 and the set of pairs {(txi , sxi+1) : 1 ≤ i ≤ |V1| − 1}. Again it is a simple
check that

|V4| = Θ(n) = ω (`(|V1| − 1) log(|V1| − 1)) ,

and so we can find a family P ′i of disjoint (txi , sxi+1)-paths in V4. Hence we can combine the
vertex sets of the absorbers Ax into a single path P ∗ using these paths.

It is easy to see that P ∗ satisfies the conclusion of the lemma. Indeed, given a subset W ⊆ V1

let {Aw : w ∈W} be the set of absorbers constructed for vertices in W . By the definition of an
absorber, there is for each w an absorbing path P ′w which starts at sw and ends at tw and covers
all the vertices in Aw. By replacing each of the paths Pw with the paths P ′w in P ∗ we obtain a
path P ∗W which has the same endpoints as P ∗ with V (P ∗W ) = V (P ∗) ∪W .

Given these two lemmas let us finish the proof of Theorem 7.4.

Proof of Theorem 7.4. Let P ∗ be as in Lemma 7.7 and let U = (V2 ∪ V3 ∪ V4 ∪ V5) \ V (P ∗).
Given any v ∈ U we have that

dU (v) ≥ dV5(v) ≥ (1 + o(1))

(
1

2
+ α

)
|V5|p

≤ (1 + o(1))

(
1

2
+ α

)(
1− α

2

)
np

≥
(

1

2
+
α

2

)
|U |p.
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Let us take s = d log3 n
p e and k = b |U |s c and randomly choose disjoint sets S1, . . . , Sk ⊆ U of

size s. Let S =
⋃k
i=1 Si and let S′ = U \ S. Note that |S′| ≤ s.

Note that, for any v ∈ U and i ∈ [k],

E(dSi(v)) =
|Si|dU (v)

|U |
≥
(

1

2
+
α

2

)
|Si|p = ω(log n). (7.3)

It follows from the Chernoff bound that with high probability

dSi(v) >

(
1

2
+
α

4

)
|Si|p

for every v ∈ U and i ∈ [k]. We claim that this condition implies there is a perfect matching Mi

between each Si and Si+1. Let us fix some i ∈ [k− 1], we wish to show that G[Si, Si+1] satisfies
Hall’s theorem. By our standard argument we only need to check Hall’s condition is satisfied
for sets of size at most s

2 .

Let X ⊆ Si be such that |X| ≤ 10 log2 n
p , let Y be the neighbourhood of X in Si+1 and suppose

that |Y | < |X|. However, by (7.3)

eG(X ∪ Y ) >

(
1

2
+
α

4

)
|X||Si+1|p ≥ |X ∪ Y | log4 n.

However, this contradicts property (P2) of (n, α, p)-pseudo-random graphs.

Conversely, suppose that 10 log2 n
p ≤ |X| ≤ s

2 and |Y | < |X|. In this case we have, again by
(7.3), that

eG(X,Y ) >

(
1

2
+
α

4

)
|X||Si+1|p ≥

(
1 +

α

4

)
|X||Y |p,

contradicting property (P3). A similar argument holds for subsets X ⊆ Si+1.

Hence we may assume that there exist matchings Mi between Si and Si+1 for each i ∈ [k−1].
By combining these matchings, we obtain a set of s vertex disjoint paths from S1 to Sk. If we
also take a path of length 0 for each v ∈ S′ we have a set of t′ = s + |S′| ≤ 2s many vertex
disjoint paths, with endpoints say xi, yi for i = 1, . . . , t′, which cover the set U . Let t = t′ + 1
and let xt, yt be the endpoints of the path P ∗.

We apply Lemma 7.6 with K = V1, t = t and with the set of pairs {yi, xi+1 : i ∈ [t]}. Since

t ≤ 2s+ 1 and s = b log3 n
p c,

|V1| =
⌈

log6 n

p

⌉
= ω(`t log t).

Indeed, `t log t = O
(

log4 n
p (log log n− log p)

)
and since p = ω

(
log10 n
n

)
, − log p = O(log n).

Furthermore dV1(v) ≥ (1 + o(1))
(

1
2 + α

)
|V1|p for every v ∈ V by (7.2) and so (C1) and (C2) are

satisfied.

Hence there exists a family of vertex disjoint xi − yi paths in V1. We can use these paths,
together with the previously constructed path family to form a cycle C which covers V2 ∪ V3 ∪
V4 ∪ V5, as well as some vertices in V1, and contains P ∗ as a subpath. Letting W = V1 \ C, we
can use P ∗ to absorb W into a longer path P ∗W with the same endpoints as P ∗, which extends
C to a Hamiltonian cycle of G.
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7.3.3 Proof of the Connecting Lemma

We will need to begin with some lemmas on expansion properties of pseudo-random graphs.
Firstly let us define for (not necessarily disjoint) subsets X and Y of V (G) and an integer k

Nk
G(X,Y ) = {y ∈ Y : there exists an (x, y)− path P of length k with V (P ) \ {x} ⊆ Y },

and we will write NG(X,Y ) for N1
G(X,Y ).

The following lemma we will need a bit later to guarantee the existence of many neighbours
of a small set of vertices in a larger set, in order to find some perfect matchings.

Lemma 7.8. Let X,Y ⊆ V (G) be such that |X| =
⌊

log2 n
p

⌋
, |Y | ≥ 50 log3 n

αp and that |NG(x, Y )| ≥(
1
2 + α

2

)
|Y |p for all x ∈ X. Then

|NG(X,Y )| ≥
(

1

2
+
α

3

)
|Y |.

Proof. Let Z = X ∪NG(X,Y ). Since |X| is small, by property (P2) it contains few edges and
so

eG(Z) ≥
∑
x∈X

NG(x, Y )− eG(X)

≥
(

1

2
+
α

2

)
p|Y ||X| − |X| log3 n

≥
((

1

2α
+

1

2

)
αp|Y |
log3 n

− 1

)
|X| log3 n

≥
(

25

α
+ 25− 1

)
|X| log3 n

=

(
25

α
+ 24

)
|X|
|Z|
|Z| log3 n.

If |Z| < 10 log2 n
p , then |X||Z| ≥

1
10 and so

eG(Z) ≥ 25

10α
|Z| log3 n,

contradicting property (P2) if α is sufficiently small. Hence |Z| ≥ 10 log2 n
p , and so |NG(X,Y )| ≥

9 log2 n
p . Let Y ′ = NG(X,Y ) \ X, then 8 log2 n

p ≤ |Y ′|, and so by property (P3) we have that

eG(X,Y ′) ≤
(
1 + α

4

)
|X||Y ′|p.

However, since NG(x, Y ) ≥
(

1
2 + α

2

)
|Y |p for all x ∈ X it follows that(

1

2
+
α

2

)
|X||Y |p ≤ eG(X,Y ′) + 2eG(X)

≤ eG(X,Y ′) + 2|X| log3 n

≤
(

1 +
α

4

)
|X||Y ′|p+ 2|X| log3 n
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and so (
1

2
+
α

2
− α

25

)
|X|Y |p ≤

(
1

2
+
α

2

)
|X||Y |p− 2|X| log3 n ≤

(
1 +

α

4

)
|X||Y ′|p,

since αp
25 |X||Y |p ≥ 2|X| log3 n. Hence

|Y ′| ≥
(

1
2 + α

2 −
α
25

)(
1 + α

4

) |Y | ≥
(

1

2
+
α

3

)
|Y |,

for α sufficiently small.

The following lemma, allows us to find many paths of a fixed length from a single vertex in
a set X to a large enough set Y .

Lemma 7.9. Let X,Y ⊆ V (G) be disjoint sets such that

(E1) |Y | ≥ 130 log3 n
αp ;

(E2) |NG(X,Y )| ≥ 2 log2 n
p ;

(E3) |NG(S, Y )| ≥
(

1
2 + α

4

)
|Y | for all S ⊆ Y with |S| ≥ log2 n

p .

Then, for any 2 log n ≤ h ≤ `, there exists x ∈ X such that Nh
G(x, Y ) ≥

(
1
2 + α

8

)
|Y |.

Proof. We will show the existence of such an x using an inductive argument. More precisely,

for each i < h we claim that if A ⊆ X is such that |N i
G(A, Y )| ≥ 2 log2 n

p then A has a subset

A′ ⊆ A with |A′| ≤
⌈
|A|
2

⌉
such that |N i+1

G (A, Y )| ≥ 2 log2 n
p .

By (E2) we can apply this claim to X, and the subsequent subsets we find h − 2 times, to

find X ′ ⊆ X such that |X ′| ≤
⌈
|X|

2h−2

⌉
with |Nh−1

G (X ′, Y )| ≥ 2 log2 n
p . However, since h−2 ≥ log n

it follows that |X ′| = 1, and so X ′ = {x}. Let M ⊆ Nh−1
G (x, Y ) be of size

⌈
log2 n
p

⌉
, note that by

definition there is a path Pw of length h−1 from x to each w ∈M . Let V ∗ =
(⋃

w∈M Pw
)
\{x}.

Since |M | ≥
⌈

log2 n
p

⌉
, by (E3) |NG(M,Y )| ≥

(
1
2 + α

4

)
|Y | and hence, since |V ∗| ≤ h|M |,

Nh
G(x, Y ) ≥ |NG(M,Y \ V ∗)|

≥ |NG(M,Y )| − |V ∗|

≥
(

1

2
+
α

4

)
|Y | − h|M |

≥
(

1

2
+
α

8

)
|Y |,

since h|M | ≤ `M ≤ 13 log3 n
p ≤ α

10 |Y |.

So, it remains to prove the claim.
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Note that, if A = A1 ∪A2 is a partition of A with |A1| = d |A|2 e then

|N i
G(A1, Y )|+ |N i

G(A2, Y )| ≥ |N i
G(A, Y )| ≥ 2 log2 n

p
.

Hence we may assume that there is some A′ ⊆ A with |A′| ≤ d |A|2 e and |N i
G(A′, Y )| ≥ log2 n

p .

Let us choose some subset B ⊆ N i
G(A′, Y ) of size |B| = d log2 n

p e. Then, by (E3)

|NG(B, Y )| ≥
(

1

2
+
α

4

)
|Y |.

Each v ∈ B is the endpoint of a path Pv of length i from a vertex in A′, let V ∗ = ∪v∈BPv be
the set of all the vertices in these paths. Then

|N i+1
G (A′, Y ) ≥ |NG(B, Y )| − |V ∗| ≥

(
1

2
+
α

4

)
|Y | − `|B| ≥ 130 log3 n

2αp
− 13 log3 n

p
≥ 2 log2 n

p
,

if α is sufficiently small.

Using this we can try to find appropriate paths for Lemma 7.6 in a greedy fashion. We split
our set K up into two parts RA and RB which are both large, and we will apply Lemma 7.9
to {ai : i ∈ [t]} and RA to see that there is some ai that is connected to more than half of RA
by a path of length ` − 1/2 in RA and actually by repeated applications this is true for more
than half of the ai, and a similar statement holds true for the bj and RB. Hence there is some

i where it’s true for both ai and bi. Then, since S = N
`−1/2
G (ai, RA) is large we will in fact find

that (if we chose RA and RB sensibly) S must have neighbours in N
`−1/2
G (bi, RB), allowing us

to find a path of length ` from ai to bi in K.

This allows us to find one such path, and in fact we can repeat this process many times to
give an approximate version of Lemma 7.6, allowing us to find half the paths. However, once
the remaining set of pairs ai, bi is too small we can no longer apply Lemma 7.9.

Lemma 7.10. Let {ai, bi : i ≤ t} be a family of pairs of vertices of G such that ai 6= aj and

bi 6= bj for every distinct i, j, where t ≥ log3 n
p . Let L =

⋃
i{ai, bi} and let RA, RB ⊆ [n] \ L be

disjoint and such that

(D1) |RA|, |RB| ≥ 48t`
α ,

(D2) For Z = A,B

|NG(S,RZ)| ≥
(

1

2
+
α

4

)
|RZ |

for all S ⊆ RA ∪RB ∪ L such that |S| ≥ log2 n
p .

Then there exists a set I ⊆ [t], |I| =
⌊
t
2

⌋
and internally disjoint (ai, bi)-paths Pi for each

i ∈ I such that V (Pi)\{ai, bi} ⊆ RA∪RB. Furthermore if 10dlog ne ≤ `′ ≤ ` then we can choose
the paths to be of length `′.
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Proof. We proceed by induction. Suppose we have already found s <
⌊
t
2

⌋
(ai, bi)-paths Pi for

some subset J ⊆ [t] of size |J | = s. Let us consider

R′A := RA \
⋃
i∈J

V (Pi) R′B := RB \
⋃
i∈J

V (Pi).

Let us pick hA, hB ≥ 2 log n such that hA + hB + 1 = `′. We claim that there exists some
i ∈ K = [t] \ J such that

|NhA
G (ai, R

′
A)| ≥

(
1

2
+
α

8

)
|R′A| and |NhB

G (bi, R
′
B)| ≥

(
1

2
+
α

8

)
|R′B|.

Indeed, we will find a set IA ⊆ K of size |IA| = b |K|2 c+ 1 such that

|NhA
G (ai, R

′
A)| ≥

(
1

2
+
α

8

)
|R′A|

for every i ∈ IA, and similarly a set IB ⊆ K of size |IB| = b |K|2 c+ 1 such that

|NhB
G (bi, R

′
B)| ≥

(
1

2
+
α

8

)
|R′B|

for every I ∈ IB. Since IA ∩ IB must then be non-empty, this guarantees the existence of such
an i.

In order to show that IA exists, suppose we have already found v1, . . . , vk ∈ {ai : i ∈ K} such
that

|NhA
G (vi, R

′
A)| ≥

(
1

2
+
α

8

)
|R′A|

for each i ∈ [k]. We want to apply Lemma 7.9 with X = {ai : i ∈ K}\{vj : j ∈ [k]} and Y = R′A.
Let us check that the conditions are satisfied.

Since |R′A| ≥
48t`
α − t` ≥

47`log3n
αp and so (E1) is satisfied. Now, by (D2) we have that for any

S ⊆ R′A ∪ {ai : i ∈ K} of size at least |S| ≥ log2 n
p

|NG(S,R′A)| ≥ |NG(S,RA)| − t` ≥
(

1

2
+
α

4

)
|RA| − t` ≥

(
1

2
+
α

8

)
|RA|

and hence (E3) is satisfied, and also (E2), since |X| ≥ |K|2 ≥
t
4 �

log2 n
p . Hence, by the conclusion

of Lemma 7.9 we can find vk+1 ∈ X such that

|NhA
G (vi, R

′
A)| ≥

(
1

2
+
α

8

)
|R′A|.

Hence by induction we can find such an IA as claimed, and a similar argument gives the existence
of an IB. It follows that there is some i ∈ K = [t] \ J such that

|NhA
G (ai, R

′
A)| ≥

(
1

2
+
α

8

)
|R′A| and |NhB

G (bi, R
′
B)| ≥

(
1

2
+
α

8

)
|R′B|.

Let us take S = NhA
G (ai, R

′
A). Then

|S| ≥
(

1

2
+
α

8

)
|R′A| ≥

(
1

2
+
α

8

)
47`log3n

αp
� log2n

p
.
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Hence, by (D2)

|NG(S,R′B)| ≥ |NG(S,RB)| − s` ≥
(

1

2
+
α

4

)
|RB| − t` ≥

(
1

2
+
α

6

)
|R′B|.

However, also by the claim

|NhB
G (bi, R

′
B)| ≥

(
1

2
+
α

8

)
|R′B|

Hence there is some vertex in NhB
G (bi, R

′
B)∩NG(S,R′B), or in other words, some s ∈ S adjacent

to some s′ ∈ NhB
G (bi, R

′
B). However, every vertex s ∈ S has a path of length hA from ai to

s contained in R′A, and similarly every s′ ∈ NhB
G (bi, R

′
B) has a path of length hB from bi to

s′ contained in R′B. Hence we can combine these two paths to find a (ai, bi)-path of length
hA + hB + 1 = `′ which is disjoint from

⋃
i∈J V (Pi).

So, we can get about halfway to proving Lemma 7.6. However, once the set X of remaining ai
becomes too small (namely, smaller than log2 n

p ), we can no longer assume that X has sufficiently
many neighbours in Y to apply Lemma 7.9.

The clever idea to get around this problem is to ‘blow-up’ the set of ai and bi that we want
to connect, replacing each with say a binary tree of bounded depth, so that there are sufficiently
many leaves in these trees that we can apply 7.9. In this way we can keep dealing with 1

2 of the
remaining vertices at a time.

7.3.4 Proof of Lemma 7.6

Firstly, we will define some more parameters that we will use throughout the proof.

m = dlog2 te+ 1, si = 2t for i ∈ [2m] and s2m+1 = s2m+2 =
|K|
4
, k = 2m+ 2.

We randomly choose disjoint sets Si ⊆ K such that |Si| = si for all i ∈ [k]. The Chernoff
bounds together with (C2) imply that for every v ∈ K ∪ L and i ∈ [k],

|NG(v, Si)| ≥
(

1

2
+
α

2

)
psi. (7.4)

We will prove a statement like the following at the end of the section.

Lemma 7.11. Given sets [t] = I1 ⊇ I2 ⊇ . . . ⊇ Im such that |Ij | = d |Ij−1|
2 e for each j, G

contains complete binary trees TA(i) and TB(i) for each i ∈ [t] such that

(F1) The depth of TA(i) and TB(i) is s− 1 for each i ∈ Is;

(F2) TA(i) is rooted at ai and TB(i) is rooted at bi for each i ∈ [t];

(F3) The vertices TA(i, j) at depth j ∈ [0,m] in TA(i) are contained in Sj;

(F4) The vertices TB(i, j) at depth j ∈ [0,m] in TB(i) are contained in Sm+j;
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(F5) The trees are vertex disjoint.

Supposing we can prove the lemma our plan is as follows: We first find a collection of paths
P1 joining the pairs ai, bi for half of the pairs, say for each i ∈ I1, using Lemma 7.10. We then
consider the remaining pairs, I2 = [t] \ I1. There are trees TA(i) and TB(i) for i ∈ I2, which
are rooted at ai and bi and have depth 1. We can now apply Lemma 7.10 to find a family of
paths L2 between TA(i, 1) and TB(i, 1) with i ∈ I2 of length ` − 2, and use these to find paths
P2 of length ` between at least half of the remaining pairs, say i ∈ J2. We let I3 = I2 \ J2 and
consider paths from TA(i, 2) to TB(i, 2) with i ∈ I3 of length `− 4, and so on. Since each time
we apply Lemma 7.10 we have a relatively large set X to apply it to, we avoid the problems we
had applying it directly.

So, there are two things left to check, firstly that we actually can apply Lemma 7.10 as
claimed, and secondly that Lemma 7.11 is true. Let’s start with the former.

Suppose we’re in ‘round’ s of this procedure, let us set

Ms = K \

(s−1⋃
i=1

Si ∪ Sm+i

)
∪

s−1⋃
i=1

⋃
Q∈Pi

V (Q)


that is, Ms is the set of vertices remaining in K after we remove all the paths we’ve constructed
so far, as well as all the vertices in the trees of depth at most s− 1. Then in round s we apply
Lemma 7.10 to {xj , yj : j ∈ [t]} where the xj are made up of the TA(i, s) with i ∈ Is and similarly
the yj are made up of the TB(i, s), and with

RA = S2m+1 ∩Ms and RB = S2m+2 ∩Ms.

Since S2m+1, S2m+2 are disjoint from Si with i ∈ [2m], it follows that

|RA|, |RB| ≥
|K|
4
−O (t`)

≥ |K|
5

= ω(`t log t)

and so property (D1) holds. Furthermore, given any S ⊆ RA∪RB ∪
⋃
j{xj , yj} with |S| ≥ log2 n

p
by (7.4) and Lemma 7.8 applied with X = S and Y = RA

|NG(S,RA)| ≥
(

1

2
+
α

3

)
|RA|.

A similar bound holds for RB and hence (D2) holds.

It thus follows from Lemma 7.10 that there is a collection of b t2c many indices j ∈ [t] such
that we have a family of internally disjoint xj−yj paths Ls of length `−2s which are contained,
apart from their endpoints, in RA ∪ RB. Note that since s ≤ log n we have that `− 2s is large
enough to apply Lemma 7.10. Hence, for some set Js of at least half of the i ∈ Is there is some
xj ∈ TA(i, s) joined by some path in this family to some yj ∈ TB(i, s) and so we can extend this
path to an ai − bi path of length `.

Hence it just remains to prove Lemma 7.11. However, we since we don’t know ahead of time
what the sets I1, I2, . . . will be, we don’t really won’t to prove Lemma 7.11, but rather show
that we can build the trees inductively during our process. So, what we prove is that we can
guarantee that the conclusions of Lemma 7.11 hold by the end of our process, where sets I1, . . .
are those that we are constructing inductively during our proof.
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Proof of ‘Lemma 7.11’. At the start of round s there will be t
2s−1 ‘active’ vertices i ∈ I which

still need to be connected by paths, and so t
2 leaves in the corresponding trees TA(i), which lie

in Ss−1, which each need to be extended by two more neighbours in Ss, and similarly t
2 leaves

in TB(i), which lie in Sm+s−1, which each need to be extended by two more neighbours in Sm+s.

Since, by (7.4)

|NG(v, Sj)| ≥
(

1

2
+
α

2

)
psj ≥ log3 n

for each j ∈ [2m] and v ∈ K we can reduce this to the following problem: Given a bipartite
graph Γ on sets X = {x1, . . . , x t

2
} ⊆ Ss−1 and Y = Ss = {s1, . . . , s2t} with minimum degree

at least log3 n and satisfying (P2) and (P3) there exists a partition of B into pairs {zi,1, zi,2},
i ∈ [t] such that both edges (xi, zi,1) and (xi, zi,2) are in Γ.

A standard application of Hall’s Theorem reduces this to showing that Γ satisfies the following
condition:

|NΓ(S,B)| ≥ 2|S| for all S ⊆ X.

Let T = NΓ(S,B). We split into two cases. Firstly if |S| ≤ 3 log2 n
p then, since eΓ(S ∪ T ) ≥

|S| log3 n, it follows from (P2) that |S ∪ T | ≥ 10 log2 n
p and hence

|T | ≥ 7 log2 n

p
≥ 2|S|.

Conversely if 3 log2 n
p ≤ |S| ≤ |X| = t

2 and |T | < 2|S|, then (P3) (applied to a superset of T
of size 2|S|) implies that

eΓ(S, T ) ≤ 2
(

1 +
α

4

)
|S|2p.

However, by (7.4) we also have that

eΓ(S, T ) ≥
(

1

2
+
α

2

)
p|S||Y | ≥ 4

(
1

2
+
α

2

)
|S|2p,

since |Y | = 2t ≥ 4|S|, a contradiction.
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