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Preface

These notes were used to lecture a course at TU Graz for masters level students in the summer
semester of 2020. The topics come piecemeal from a variety of sources: Sections 1 and 6 follow
to some extent the exposition from “The Probabilistic Method” by Alon and Spencer; Section 2
follows the survey paper “Dependent Random Choice” by Fox and Sudakov; Section 3 presents
results from papers of Krivelevich and Sudakov, Riordan and also Erde, Kang and Krivelevich;
Section 4 owes a great deal to to Galvin’s series of lectures on entropy; Section 5 follows in part
the survey “The mathod of hypergraph containers” by Balogh, Morris and Samotij as well as
the lecture notes on “The method of hypergraph containers” of Morris; Section 7 follows in part
the book “Introduction to random graphs” of Frieze and Karonski.



1 The Lovas Local Lemma

1.1 The Local Lemma

In a typical probabilistic proof of a combinatorial result, one has to show that the probability
of a certain event is positive. Many of these proofs tend to show more, that the probability is
not only positive but very large, often tending to 1 as the ‘dimension’ of the problem considered
grows.

On the other hand, there is a trivial case in which one can show that a certain event holds
with positive, but very small, probability. Suppose we have n mutually independent events A;,
each of which hold with probability p > 0, then the probability that they all hold simultaneously
is at least p™, which is positive, but may be exponentially small in n.

It is natural to expect that something similar will be true if the events are not entirely
independent, but only ‘mostly independent’, for some sensible definition of ‘mostly independent’.
One way to define this is as follows.

Definition. Let Ay, As,..., A, be events in an arbitrary probability space. A directed graph
D = ([n], E)is called a dependency digraph for the events A, Ag, ..., A, if for all i the event A;
is mutually independent of all the events {A; : (¢,7) € D}.

So for example when Aj, Ao, ..., A, are all mutually independent a dependency diggraph
is the empty graph FE,. Note that we are not simply insisting that A; is independent of A; if
(i,7) ¢ E (in particular since this is a symmetric property, and so we could use an undirected
graph), the property we are checking is stronger, and so it’s not sufficient to simply put an edge
in D between every pair of dependent events.

We might expect that there are some natural conditions which tell us that when the depen-
dency digraph is sparse enough, there is some positive probability that all the events hold. In
the following, to follow standard notations, we will think of the events which all happen with
small probability as being the negation of a set of events A;, which we will denote by A;.

Lemma 1.1 (The Lovas Local Lemma). Let Ay, Ag, ..., A, be events in an arbitrary probability
space. Suppose that D = ([n], E) is a dependency digraph for the events {A;: i € [n]} and there
exists x1,Ta,. ..oy € [0,1) such that

for alli € [n]. Then

P (m AZ) St
=1 =1

In particular, with positive probability no event A; holds.



One way to think of these weightings z; is as pessimistic estimates for the probability P(A;).
Indeed, if the conditions of the lemma are satisfied, then we always have that P(A4;) < z;, however
we need to choose these upper bounds with some slack, since we need to account for the extra
term [[(1 — x;). The larger we choose each individual x; to be, the larger its contribution as
(1 — ;) will be in the products it appears in. So, in order to choose appropriate z; we have to
balance out these two competing concerns.

Often in application the sets A; satisfy certain symmetric conditions which allow us to simplify
the (rather complicated looking) conditions in Lemma 1.1.

Corollary 1.2. [Symmetric Local Lemma/ Let Ay, Aa, ..., A, be events in an arbitrary proba-
bility space. Suppose that each event A; is mutually independent of a set of all but at most d
of the other A; (equivalently there is a dependency digraph with all outdegrees less than d), and
that P(A;) < p for alli. Ifep(d+ 1) <1 then

P(é&) > 0.

Proof. If d = 0 then the events are mutually independent and the result follows trivially. Other-
wise let ; = 1/(d+ 1) < 1. There is a dependency digraph D = (V, E)) such that all outdegrees

are less than d and so p
1 1
) — ) > _ .
Z; || (1 x])_d+1<1 d+1>

(3,7)€EE

Note that it is a simple check that

and so 1
i 1 P(A;
T H( xj)>€(d+1>_p_ (As)
(i,7)EE
Therefore by Lemma 1.1 the conclusion holds. O

1.2 The Linear Aboricity of Graphs

Definition. Given a graph G the aboricity of G is the minimum number of forests into which
the edge set E(G) can be partitioned. A linear forest is a forest in which every component is a
path, and the linear aboricity of a graph, which we denote by la(G), is the minimum number of
linear forests into which the edge set E(G) can be partitioned.

The following simple conjecture is longstanding.

Conjecture 1.3 (The Linear Aboricity Conjecture). Let G' be a d-regular graph. Then

ey = [2£1].
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Note that since every d-regular graph on n vertices has nd/2 edges and every linear forest has
at most n — 1 edges we have that la(G) > d/2, and so the content of the conjecture is to show
that every d-regular graph can indeed by decomposed into a small number of forests. Also, since
every graph of maximum degree A can be embedded into a A-regular graph, the conjecture is
equivalent to the statement that every G with satisfies la(G) < [(A(G) + 1)/2].

Much work has been done towards the conjecture and the best known bound without a
probabilistic argument was that la(G) < 3A(G)/5. .

It will be convenient to work instead with directed graphs. A d-regular digragph is a directed
graph in which the indegree and outdegree of every vertex is precisely d. A linear directed forest
is a directed graph in which every connected component is a directed path and the dilinear
aboricity of a directed graph D, which we denote by dla(D), is the minimum number of linear
directed forests into which the edge set E(G) can be partitioned. We then have the directed
version of the Linear Aboricity Conjecture.

Conjecture 1.4. Let D be a d-regular digraph. Then

dla(D) = d + 1.

Note that since the edges of any connected undirected 2d-regular graph can be oriented along
an Euler cycle, so the the resulting digraph is d-regular, Conjecture 1.4 for d implies Conjecture
1.3 for 2d.

It is a simple exercise to show that a graph G contains an independent set of size at least
n/(A(G)+1). We will require for our proof a lemma that tells us that, at the price of decreasing
the size by a constant factor, we can find a large independent set with additional structure

Lemma 1.5. Let H = (V, E) be a graph with mazimum degree A, and let V =V, UVoU...UV,
be a partition of V into r pairwise disjoint sets. Suppose that |V;| > 2eA for each i € [r]. Then
there is an independent set W C V' that contains a vertex from each V.

Proof. Without loss of generality we may assume that |V;| = [2eA] = g for each i. We pick a
single vertex from each V; independently and uniformly at random and let W be the union of
these vertices. We will show that with positive probability W is independent.

For each edge f € E(H) let Ay be the event that both ends of f are contained in . Clearly
P(Af) < &

As is common in applications of the local lemma, there is a set of mutually independent
underlying variables, here given by the vertex v; chosen in each V;, such that each of our events
is determined by some subset of these variables. In this case a natural choice for a dependency
digraph is to join a pair of events if they depend on a common variable (so in fact we end up with
a symmetric digraph). It is easy to check that this in fact determines a dependency digraph.

What does this mean in the current application? Well, if the endpoints of f lie in V; and V;
then Ay depends only on the value of v; and v;. Hence in our dependency digraph f will be
joined to all the edges which have an endpoint in V; or V;



There are at most A|V; U V| < 2gA edges meeting V; U V; and hence there is a dependency
digraph for the events A in which the maximum degree is < 2gA (a strict inequality as f meets
V;UV;). Since e.2gA.(1/¢%) = 2eA/g < 1 we have by Corollary 1.2 that with positive probability
none of the events Ay hold. However this means that W is an independent set containing a
vertex from each V. O

We note at this point that Lemma 1.5 enables us to prove Conjecture 1.4 for digraphs with
no short directed cycle. The directed girth of a graph is the minimum length of a directed cycle
in that graph.

Theorem 1.6. Let D = (V, E) be a d-reqular directed graph with directed girth g > 8ed. Then

dla(D) =d+ 1.

Proof. We first use Hall’s theorem to decompose D into d-pairwise disjoint 1-regular spanning
subgraphs, D1, Do, ..., Dy. Strictly we form a bipartite graph on (A, B) where A = B =V and
let (a,b) be an edge if and only if (a,b) is a directed edge in D. Then this bipartite graph is
d-regular and so we can decompose it into d pefect matchings, each of which correspond to a
1-regular spanning directed subgraph.

Each D; is a union of vertex disjoint directed cycles, Cj,, Ci,, . .. Ciri' Let Fq, Es, ..., E, the
edge sets of each of these cycles, taken over each 1 < i < d. We have that {E;: i € [r]} is a
partition of the edge set of D and by the girth condition each |E;| > g > 8ed.

We consider the (undirected) line graph L of D, that is the graph whose vertex set is E and
two edges are adjacent if and only if they share a vertex. Note that L is 4d — 2 regular and
{E;: i € [r]} is now a partition of the vertex set of L. Since |E;| > 8ed > 2e(4d —2) we can apply
Lemma 1.5 to L to find an independent set in L containing an element of each F;. However this
corresponds to a matching M in D containing at least one edge from each cycle Cj;.

Hence if we consider the subgraphs Dy \ M, Dy \ M, ..., Dy \ M, M we see that each D; \ M
is a linear directed forest, and M is a matching, and between them they cover the edges of D.
Hence
dla(D) < d+ 1.

Finally we note that, as before, D has |V|d edges and each directed linear forest can have at
most |V| — 1 edges, and so

dla(D) > Vid

d.
_|V|—1>

Therefore dla(D) = d + 1 as claimed.

In order to prove a result for general digraphs we show that we can decompose almost all of
the edges of a regular digraph into a relatively small number of almost regular digraphs with
large girth, together with a small remainder. To do so we need the following technical lemma,
which also uses the Local Lemma in its proof.



Lemma 1.7. Let D = (V, E) be a d-regular directed graph, where d is sufficiently large, and let
p be an integer such that 10v/d < p < 20v/d. Then there is a p-colouring of V., f : V — [p], such
that, for each v € V and each i € [p] the numbers

Nt(,i)={u eV : (v,u) € E and f(u) =i}

and
N (v,i))={u eV : (u,v) € E and f(u) =i}
satisfy
d d d
N+v,z'—,N_v,i—‘§3 —log (d).
RCOR N B EE N E

Proof. We pick a random p-colouring f : V' — [p] by choosing f(v) for each v € V' independently
and uniformly at random from [p]. For each v € V and i € [p] let A:i be the event that

'N+(u,z‘) — z' > 34 /;llog (d)

and similarly for A ;. We have that N *(v,4) is a binomial random variable with expectation

d/p, so if we let t =3 I%llog (d) then, by the Chernoff bounds we have that

2 9% log (d)

P(AT) <20 WD <3 F <a

and similarly for A; ;- As before we have a set of mutually independent variables, the colour
f(v) of each vertex, which determine our events. Clear Aii is determined by the set of variables
{f(w): w € N*(v)}. Since the in and out degree of each vertex is d, it follows that Aii will share
variables with at most 2d?> many other Aij for any fixed j. Therefore there is a dependency
digraph for these events with maximum degree < 2d?p. Since

1

p (2d*p+1) <1

e

we have that by Corollary 1.2 there is a non-zero probability that none of the events A:}ri, A
happen. Therefore there is a colouring f satisfying the required properties.

We are now ready to argue the general case.

Theorem 1.8. There exists a constant ¢ > 0 such that for every d-reqular digraph D

dla(D) < d + cd1 (log (d))2.

Proof. Let D = (V, E) be an arbitrary d-regular digraph. Let p be a prime satisfying 10v/d <
p < 20V/d (which exists by Bertrand’s postulate). By Lemma 1.7 there is a p-colouring f of V'



such that the conclusions of the lemma hold. For each i € [p] let D; = (V, E;) be the spanning
subgraph of D defined by

E;i={(u,v) € E :, f(v) = f(u) +i mod(p)}.

By assumption we have that the maximum outdegree Af and the maximum indegree A;” of G;
are at most

d d
— + 34/ —log (d).
p p

Moreover, for each i # p, the length of every directed cycle in G; is divisible by p, and so
each G; has directed girth g; > p. It is a simple exercise to see that G; can be completed, by
adding vertices and edges, to a A;-regular digraph with A; = max (A;F,A;), which has the
same directed girth g;. Since g; > 8eA; (for all sufficiently large d) we have that by Theorem
1.6 that, for each i # p

d d
dla(G;) < Aj+1< — 434/ —log(d) + 1.
p p

To bound the size of G}, we note that, G, can also be completed to a A,-regular digraph,
which can then be partitioned into A, disjoint 1-regular spanning subgraphs as before using
Hall’s theorem. By splitting each of these into two matchings we see that

dla(G,) < 2A, < QZ +6 Zlog (d).

These last two inequalities together with the fact that 10v/d < p < 20v/d imply that

O]

Since any 2d-regular graph G can be oriented so the resulting digraph is d-regular (and since
every (2d — 1)-regular G is a subgraph of a 2d-regular graph), we have as an immediate corollary
of Theorem 1.8.

Corollary 1.9. There exists a constant ¢ > 0 such that for every d-reqular graph G

la(G) < g + cd1(log (d))z.
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1.3 Acyclic edge-chromatic number

The Local Lemma has been quite successful in applications to graph colouring. Indeed, often
in colouring problems we would like to take a random colouring, but avoid the ‘local’ events
that particular substructures are coloured ‘incorrectly’. For example, if we wish to find a proper
colouring the bad events are adjacent vertices which receive the same colour. Structural prop-
erties of the graph can then be used to bound the dependencies between these bad events.

As an example let’s consider the following notion of colouring for a graph G: We say an
edge colouring x : E(G) — [k] is proper if no two adjacent edges receive the same colour and
is acyclic if there is no 2-coloured cycle. The acyclic edge-chromatic number of GG, denoted by
a(@) is the least number of colours in a proper acyclic edge-colouring of G.

Since every proper edge-colouring of G must use at least A(G) many colours there is a trivial
bound that a(G) > A(G). However it was conjectured by Alon, Sudakov and Zaks that this
bound is not far from the truth.

Conjecture 1.10. For any graph G, a(G) < A(G) + 2.

Alon, Macdiarmid and Reed showed, using the local lemma, that a(G) < 60A(G) and whilst
this constant has been improved, the best known bound is still a(G) < 16A(G) which follows
from a closer analysis of their proof.

Theorem 1.11. For any graph G, a(G) < 100A(G)

Proof. Let us define a random colouring x : F(G) — [L00A] by choosing the colour of each
vertex uniformly and independently. We wish to show that with positive probability yx is a
proper acyclic colouring. There are two types of bad events that we wish to avoid:

e The event Ap that a pair of adjacent edges B is monochromatic;

e The event A¢ that a cycle C of length 2k is properly two-coloured.

Let us call the first a type 1 event and the second a type k event. Clearly neither event is likely to
happen: The first event happens with probability ﬁ and the second happens with probability

2% 2%k—2
at most 2(3) (o)~ < (fom)” -

Furthermore, note that each edge e lies in at most A%*~2 different cycles of length 2k. Indeed,
this can been seen by considering the number possibilities for the tth edge f; in the cycle as
t =1,...,2k. The first edge is fixed by our choice of e = f;. We then have at most A many
choices for f,, as it must be adjacent to f; and then, having chosen fs5, at most A many choices

for f3 and so on. However, once we’ve chosen for_1 then fi is fixed, since it must join for_1
and fi. Hence we have at most A%*~2 many possible choices during this proces.

As before, there is a set of mutually independent variables, here given by the colour of each
edge {x(e): e € E(G)}, such that each of our events is determined by some subset of these
variables. We then form a dependency digraph by joining a pair of events if they depend on a
shared variable.

10



By our observation in this digraph each Type 1 event is connected to at most 4A type 1
events and at most 2A%~2 type k events and each type ¢ event is connected to at most 4¢/A
type 1 events and at most 2/A%~2 type k events.

To choose our estimators xp and x¢ let us take xp = x1 := %5 A for each event of type 1 and

To = T = (50%)%_2 for each event of type k. Then for events of type 1

Li H (1— xj) =x1(1— $1)4A H(l _ xk)QA%*l
k

(i,9)EF

1 2k—1
> 507Ae % 1;[6_2(510)

1 2k—2
= m@ 5806 221&(%)
> 1 -1
= 50A°

1
> =
> Tooa = PAB),

since e~ 5 > % Similarly for events of type £

2k—2
H (1—2) = z(1 — a1 4mH o)A
Lj)EE

> IP)(AC 6é(210g2—%)—2

> P(Ac),

~— —

since £ > 4. Hence the conditions of Lemma 1.1 hold, and so we can conclude that with positive
probability x is a proper acyclic colouring, and hence a(G) < 100A. ]

Alon, Sudakov and Zaks were able to show that the conjecture holds for graphs of large girth.

Theorem 1.12. If G is a graph with mazximum degree A and girth at least 2000A log A then
a(G) <A+2.

Proof. Let us denote by g the girth of G, so that g > 2000Alog A. By Vizing’s Theorem there
is at least one proper colouring x : E(G) — [A + 1] using at most A + 1 colours. However, this
colouring might contain monochromatic cycles.

11



We will randomly recolour each edge independently with a new colour A+ 2, with probability
ﬁ, and we claim that with positive probability this results in a proper acyclic colouring x’.

As before we have two types of bad events that we wish to avoid:

e The event Ap that a pair of adjacent edges B is monochromatic in y/;

e The event A¢ that a cycle C of length 2k is two-coloured in y’.

Again, each event is quite unlikely to happen. Indeed, since Yy is proper a pair of adjacent edges
B is monochromatic in x’ only if both are recoloured A + 2, which happens with probability
ﬁ. Furthmore a cycle of length 2k can be two-coloured if either it was two coloured in ¥,

and no edge was recoloured, with probability at most (1 — 32%)%, or if half the cycle was a
single colour in x and the other half were all recoloured, with probability at most (M%)k This

suggests that there are really three types of bad events we should consider. Let us say an even
cycle D is half-coloured if it contains a monochromatic matching and let us denote by H(D)
the set of those edges (note that in a properly 2-coloured cycle there are two such sets). We
consider the following events:

e The event Ap that a pair of adjacent edges B is monochromatic in y’;
e The event A, that a cycle C of length 2k is two-coloured in x and no edge is recoloured;

e The event A’ that a cycle D of length 2F is half-coloured in x and every edge not in H (D)
is recoloured.

Let us call these events type I, II(k) and III(k).

Note that each edge is contained in at most 2A pairs of adjacent edges and is contained
in at most A many 2-coloured cycles in x, since y is proper. Furthermore, we can bound the
number of half-coloured cycles D of length 2k that each edge is contained it. Indeed, given an
edge e, suppose first that e € H(D). In this case, let us imagine choosing the edges of our cycle
sequentially starting at e. For each edge in H(D) our choice will be fixed by the colouring ¥,
and for each edge not in H(D) we will have at most A choices of which edge to choose. However,
having chosen all of the other edges, the last edge of the cycle is then fixed by our choice of e.
Hence, there are at most A*~1 such half-coloured cycles.

On the other hand, if e ¢ H(D), then we have at most A choices for the colour of the second
edge. This fixes both neighbours of e. Then, as before choosing edges sequentially around the
cycle, the edges in H(D) will be fixed by x, and we will have at most A choices for each edge
not in H (D). However, having chosen all of the other edges, the second to last edge of the cycle
will be fixed by our choices so far, and so again there are at most A*~! such half-coloured cycles.

Hence each edge e is in at most 2A%~! many half-coloured cycles D. So, as before we can
choose our dependency digraph such that each event which depends on k edges is connected to

at most 2kA events of type I, at most kA events of type II in total and at most kA1 events
of type III(¢).

It remains to choose appropriate estimators x; for the probabilities of each event. Recall that

12



o P(Ap) = for each event Ap of type I;

1024A2

P(A) = (1 - 32%)% < ¢~ 15 for each event Af of type II(k);
P(A}) = (32A) for each event A’, of type III(k);

note that, since by assumption the girth of G is very large, k& > 1000A log A and so P(A}) <
A=Y for every C.

For our choice of estimators x; let us take

e Ip=1]:= for each event Ap of type I;

512A2

® o =1I9:= 128A2 for each event Ay, of type II;

e Ip == (i) for each event A, of type III(k).

It remains to check that the bounds in the Local Lemma hold. Firstly, for and event Ap of
type I we have

k—1
21(1— 21)*3(1 — 2 QAH C )t

1 Lo\dA L\ L\ A%
= 1— 1-—— ) [t (5%
512A2 512A2 128A2 . 2A

1 1 8 _
e 64A e 32Ae A k2

>
~ 512A2

_ 1 _ 1 _§272000A10gA
e 6iAe RAe A

>
~ 512A2
> P(Ap)

since k > g > 2000Alog A and A > 2.

For an event Ay, of type II(¢) we have

zo(l— >4m — QeAH — 1z 4mk 1

! 1 1 A0A 1 1 2@AH 1 L\ aenk
~ 128A2 512A2 128 A2 ; 2A

1

>
= 128A2
>_1 ok
_— 21
= 128A2°
‘ ¢ 1

T 16A ¢100A
M DY

k
e 64Ae 32Ae AZkQ

v
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again since k,¢ > g > 2000Alog A and A > 2.

Finally for an event A/, of type III(¢) we have

k—1
x£<1 - x1)4€A(1 o x2)ZZA H(l - iL‘k)MA
k

L\ L\ 1\ L\ ALAFT
- R R I
2A> ( 512A2> ( 128A2> 1;[ (1 <2A> )

32A

> P(Ap)
where in the third line we have used that this is the same quantity which appears in the previous
computation. ]
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2 Dependent random choice

Recently a technique which is based on a simple application of the alteration method has been
used in various contexts, normally to do with embedding sparse graphs. In this chapter we
give a short overview of the method, which is known as dependent random choice, and a few
examples of applications.

The basic idea can be summarised as follows: We would like to find, in a dense graph (that
is a graph with large minimum/average degree), a set of vertices U such that every small subset
of U has many common neighbours. To do this, we first pick a small set of vertices T at random
from the graph and let U’ be the set of common neighbours of 7. Intuitively, if we have some
subset of G with not many common neighbours, then it is unlikely that all the members of T
will lie in this set of common neighbours, and hence it is unlikely to be a subset of U’. Therefore
the expected number of ‘bad’ subsets in U’ will be small and so by removing a small number of
vertices, one from each ‘bad’ set, we should find a set U with the desired properties.

Lemma 2.1. Let G be a graph with |G| =n and let d = 2|E(G)|/n be the average degree of G.
If there exist positive integers t,a, m,r such that

dt ny\ /m\t S
nt=1  \r (5) =@
then G contains a subset U of at least a vertices such that every subset R C U of size |R| = r
has at least m common neighbours.

Proof. For any set X C Vlet I'(X) = {v € V : v € N(z) forallz € X} be the set of
common neighbours of X. We pick a set of vertices T' uniformly at random from V', that is
with repetition. Let A = I'(T) be the set of common neighbours of 7', and let X be the random
variable with counts the size of A. for any vertex v, the probability that v € A is the probability
that every element of T is a neighbour of v and so, by linearity of expectation

s =3 (M) <o v

veV veV

t

Since the function f(z) = z' is convex on [0, 00), we can use Jensen’s inequality to say

E(X) = n"n <Zev|N<”)|>t e <2|E(G))t ) ndt

n n t=1"

Let Y be the random variable which counts the number of subset R C A of size r with fewer
than m common neighbours. For any R C V, let I'(R) be the set of common neighbours of R,
then the probability that R is a subset of A is just

<|F<R>\>ﬁ

Therefore, if we let R ={R C G : |R| =r and |[I'(R)| < m} be the set of ‘bad’ subset of V', we

have that
EY)=Y PRCA)=Y <‘F(HR)’>t < (Z) (%)t

ReR ReR

15



Therefore we have that

dt n\ /m\t
- e ()2 2
Therefore there exists a choice of T for which X —Y > a. We delete one vertex from each subset
R of I'(T") of size r with fewer than m common neighbours. Let U be the remaining subset of
['(T). We have that [U| = X —Y > a and by construction every subset of U of size r has at

least m common neighbours. O

Once we have a large set U such that every small subset has many common neighbours we
can embed bipartite graphs in it in the following way

Lemma 2.2. Let G be a graph, a,m,r be positive integers and suppose there exists a subset
U C V(G) of at least a vertices such that every subset R C U of size r has at least m common
neighbours.

If H is a bipartite graph on vertex sets A and B such that |V(H)| < m, |A| < a and every
vertex in B has degree at most r, then H is a subgraph of G.

Proof. We wish to find an embedding of H in G given by an injective function ¢ : V(H) —
V(G). We start by picking an injective function ¢ : A — U arbitrarily, which is possible since
Ul > a > |A]|

We label the vertices of B as v1,v2,...,vp and try to embed them in this order one at a time.
Suppose we have already defined ¢(v;) for all ¢ < j and we wish to embed v;. Let N; C A be
the neighbourhood of v;, so |[N;| < 7. Since ¢(NN;) is a subset of U of size at most r, there are
at least m vertices in G adjacent to all the vertices in ¢(NN;). Since the total number of vertices
embedded already is less than |V (H)| < m, there is at least one vertex w € G which has not
been used in the embedding and is adjacent to all the vertices in ¢(NN;). We set ¢(v;) = w.

After we have embedded every vy, it follows that ¢ is the desired embedding of H as a subgraph
of G. O

2.1 Turan Numbers of Bipartite Graphs

The abundance of variables in Lemma 2.1 make it difficult to understand exactly what’s going
on, so let’s look at an example of an application. For a graph H and an integer n, the Turan
number ex(n, H) denotes the maximum number of edges in a graph on n vertices which does
not contain H as a subgraph. Turan’s theorem determines this number precisely for complete
graphs H = K, and the asymptotic behaviour for graphs of chromatic number at least 3 is
given by the well known result of Erdés and Stone

Theorem 2.3 (The Erdés-Stone Theorem). For any graph H with x(H) > 3

ex(n, H) = (1 _ X(Hl)—l 4 0(1)> <’2’>

For bipartite graphs the situation is much more complicated, and there are relatively few
non-trivial bipartite H for which the order of magnitude of ex(n, H) is known. The following

16



result gives a bound for the Turdn number of bipartite graphs in which one vertex class has
bounded degree.

Theorem 2.4. Let H be a bipartite graph on vertex sets A and B such that all vertices in B
have degree at most r. Then there exists some constant ¢ = C(H) such that

ex(n, H) < n® .

Proof. Let a = |A| and b = |B|. The idea is, given a graph G with |V(G)| = n and ¢(G) >
en?~1/7 | to use Lemma 2.1 to find a subset U C V(G) of size at least a in which all the subsets
of size r have at least a + b common neighbours.

So let us check that the required bound holds in Lemma 2.1. We let m = a4+ b, t = r and

(for reasons which will become clear) let ¢ = max (al/ ", @), note that ¢ depends only on

H. Given a graph G with |V(G)| = n and e(G) > ¢n?>71/7, the average degree of G satisfies
d > 2ent~Y/". Therefore

L)@ e (2 ()

(207 - (““) > o

r

Y

> a.

Therefore by Lemma 2.1 there exists a subset U of V(G) of size at least a in which all the

subsets of size r have at least a + b common neighbours. Hence, by Lemma 2.2 H is a subgraph
of G. O

These bounds are best possible in terms of their dependence on r. Indeed it islknown the
the Turdn number of the complete bipartite graphs Ky, when t > (r — 1)! is Q(n*" 7).

2.2 The Ramsey Number of the Cube

Definition. The Ramsey number of an arbitrary graph H is

r(H) = min{n : Every 2 colouring of K,, contains a monochromatic copy of H}.

The r-dimensional Hypercube, Q,, is a graph with vertex set {0,1}" where two vertices are
adjacent if and only if they differ in exactly one coordinate.

An old conjecture of Burr and Erdés is that the Ramsey number of the cube is linear in
the number of vertices, that is there exists some constant C' such that r(Q,) < C2". Early
bounds were much worse than this, for example Beck showed that r(Q,) < 207 More recently
Shi obtained the first bound which was polynomial in the number of vertices, showing that
r(Q,) < 2¢7+°(") for some C' ~ 2.618. Lemma 2.1 easily implies a, slightly worse, polynomial
bound on r(Q,).

Theorem 2.5.
T(QT) < 23r
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Proof. Let n = 23", Given any two colouring of K,, one of the colour classes contains at least
half the edges. Let G be the graph of this colour.

Since Q, is a bipartite graph, with vertex sets of size 2"~! and maximum degree r, we would
like to use Lemma 2.1 as before to find a set U of size at least 2"~! such that every set of r
vertices has at least 2" common neighbours.

So let us set @ = 2”1, m = 2" and r = r. We want to choose an appropriate ¢ such that

dt n (m)t S
— = — a
nt—1 r)\n/ — 7
where d is the average degree of G. Note that, since G has at least half of the edges of K,, we

have that
e(G)

n

d>2

>—-(n—1) >2 °n,

N =

for an appropriately chosen ¢ > 1. Now

o (m)gg—ctn_nrmt
nt-1 r n/ — rl nt

r—t,,t
n m
=2"% - ————
r!
2
_ 23r—ct B 93r°=2rt
r!

Setting t = %7’ makes the second term negligible and so, to make the first term large we need
3r — c%r > r, so for example we can take ¢ = 4/3. All together this gives us

t t
d  (n (@) ZQT_122T—1:CL.
nt—1 r n 7!

Hence, as before, we can use Lemmas 2.1 and 2.2 to say that O, is a subgraph of G, that is,
in any 2-colouring of K, the largest colour class will contain a subgraph isomorphic to Q,.
Therefore 7(Q,) > n = 2. O

2.3 Improvements

Lemma 2.1 tells us that in any sufficiently dense graph on n vertices we can find a large set of
vertices U such that every small subset has many common neighbours. For many applications it
would be useful to have both the size of U and the number of common neighbours to be linear
in n, for example if we wished to prove that the Ramsey number of the cube was linear in the
number of vertices using the same method.

However one can construct graphs with average degree just less than n/2 such that any
linear size subset of the vertices contains a small subset (in fact even a pair of vertices) with
o(n) common neighbours.

However using a similar proof based on alterations one can prove that in every dense graph
there exists a subset U of linear size in which almost every small subset has linearly many
common neighbours.
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Lemma 2.6. Let € > 0, r < n be positive integers, and G a graph on N > 4re~"n vertices with
2

at least €2~ edges. Then there is a subset U C V(G) with |U| > 2n such that number of subsets

S C U with |S| =r and less than n common neighbours is at most

ar()

How might this be useful? Well if we think about that proof of Lemma 2.2 given a set U such
that every small subset had many common neighbours, we embedded a bipartite graph H by
arbitrarily embedding the left hand side in U, and that verifying that we can always extend that
to an embedding of H, using the fact that when we want to embed a vertex v on the right hand
side, the image of it’s neighbourhood is a small set in U, and so has many common neighbours
which are all candidates for the image of v.

If we were more careful in how we embedded the left hand side of H into U at the beginning,
then if sufficiently few of the small sets in U don’t have many common neighbours, we could
try to embed the left hand side in such a way that none of these ‘bad’ small sets appear
as neighbourhoods of things in the right hand side of H. We could then extend this to an
embedding of H as before.

Obviously this will require some slightly stronger conditions on the graphs H we consider.
The specific numbers in this lemma have been chosen so that an analogy of the embedding
lemma (Lemma 2.2) carries over in this way for graphs with A(H) < r. Using this one can
improve on the previous bound to

Theorem 2.7.
T(Qr) < r2r+3 < 22r+o(r).

2.4 Embedding 1-subdivisions of general graphs

Given a graph H the 1-subdivision of H is the graph obtained by subdividing each edge of H
exactly once. Note that if K is the 1-subdivision of H then K is a bipartite graph, one of whose
partition classes can be associated with the vertices of H, and the other with the edges of H,
and the degree of every vertex in the latter is two.

As we will see on the example sheet, it is relatively easy to use dependent random choice to
show that in any dense graph G, with say en? many edges, you can find a subdivision of the
1-subdivision of a complete graph on f(¢)y/n many vertices. In fact, by using a slight variation
on the dependent random choice lemma, we will show that such a G will contain a 1-subdivision
of every graph with at most f(e)n many edges.

Theorem 2.8. Let H be a graph with at most N edges and vertices, and let G be a graph with
n vertices and en? edges such that n > 128¢73N. Then G contains a 1-subdivision of H.

The proof will involve a slightly more involved use of the dependent random choice methods.
Given a graph H and a subdivision H' of H, let us call the vertices of H' coming from vertices of
H principle vertices and those coming from the subdivided edges subvidision vertices. A naive
strategy would be to try and find a set U of size at least N such that every pair of vertices has
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at least N common neighbours. We could then embed the principle vertices greedily in U, and
use the large shared neighbourhoods to embded the subdivision vertices.

However since N could be linearly large in n, we can’t hope to find such a set U. However,
we note that if the number of vertices is linearly large, then there must be many vertices of quite
low degree, for which we have to be much less careful when embedding. So our idea will be to
list the principle vertices from largest to smallest degree and deal with them in turn.

At the start these high degree vertices might have many neighbours already embedded, so we
will want to make sure we’re working in some set U such that every vertex in U has many common
neighbours with a very high proportion of the other vertices in U (such a high proportion that if
we take away the ‘bad’ vertices for each of the already embedded neighbours of the vertex we’re
considering, there is still a candidate to embed). By the end however, when the vertex we’re
embedding has quite low degree, we won’t need the proportion of ‘bad’ vertices for any vertex
in U to be as high to be able to guarantee that a candidate to embded exists.

So, rather than finding a set U all of whose small subsets have many common neighbours,
we will find a sequence of nested sets Ay O Ay D ... such that A; is sufficiently large and as ¢
increases the number of pairs in A; with small common neighbourhoods will drop quickly. Let
us write ¢(z,y) for the codegree of x and y, the number of common neighbours.

Lemma 2.9. Let G be a graph with n > 128¢ 3N and let Vi be the set of vertices in G with
degree at least 5. Then there is a nested sequence of subsets of vertices Vi = Ag 2 A1 2 ...
such that, for alli >0, |Aj11] > §|Ai| and each vertex in A; has codgree at least N with all but

at most (%)Z |A;| vertices in Aj.

Proof. Suppose we have already picked Ag 2 A1 D ... D A;_; satisfying the properties and we
wish to find A;. Let us choose a vertex w uniformly at random from V, let A = N(w) N A;_1
and let X = |A|.

En

Since every vertex in Ag has degree at least 5, so does every vertex in A; 1 and so

|
2

3

Let Y be the random variable counting the number of pairs x,y € A with c(:v,'y) < N. Note
that, for any pair x,y € A;_1 the probability that z,y € A is z9) | et G = (%)l.

n

Let E;—1 be the set of pairs {x,y} in A;_; such that ¢(x,y) < N, so that by assumption
’Ez’ < il ’Ai_1’2. It follows that

2
N N Ci—1 2
E(YY) < —|Ei1] < — A
(V) < 1Bl < 54|
Let us consider the random variable Z = X? — I2EI(E)(<1;§Y — E(;{)2. By the convexity of the

function x? and Jensen’s inequality we have that E(X?) > E(X)? and hence by linearity of
expectation E(Z) > 0.
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Hence there is a choice of w such that this expression if non-negative. It follows that

E(X 2 2
xp e B S g
2 8
and also, since n > 128¢ 3N,
QE(Y) 2 2N C’i—l 2 4 2 ECi_l 2
Y < X< — A | ————X" < X~
SEX)2T T a2 [Ait] A 27 T 32

From the first inequality we have that |A| = X > £|A4; 1] and the second inequality guar-

antess that the number of pairs of vertices in A with codegree less than N is at most <551 |A|?.

If A contains a vertex that has codegree < N with more than =5z*|A| many other vertices
of A, we delete it and continue this process until there are there are no vertices left which have

codegree < N with more than “5z*|A| remaining vertices.

During this process we delete at most

ECi—1 EC;—1 A
( 32 ‘AF)/ 16 ‘A|:‘2‘

many vertices and hence if we let A; be the remaining set of vertices then |4;| > %' > <lAial,
and every vertex in A; has codegree at least N with all but at most
€Ci—1
16

g
|A] < gCifﬂAi\ = ci| A

vertices of A;. Hence the claim follows by induction. O

Theorem 2.10. Let G be a graph with n > 128¢ 3N wertices and en® edges and let H be a
bipartite graph on partition classes A, B with at most N vertices and edges such that every vertex
in B has degree 2. Then G contains H as a subgraph.

Proof. If we let Vi be the set of vertices in G with degree at least = then V1| > cin. Indeed,

the number of edges of G not meeting a vertex in V1 is at most n5* < % and hence the number

of edges with both vertices in V; is at least “g”

follows.

%, but also at most ( ), from which the claim

By the previous lemma we can find nested subsets Vi = Ay O A; O ... such that, for all
i >0, |Ait1| > £|A;| and each vertex in A; has codgree at least N with all but at most (§)" |A;|
vertices in A;.

Let H' be the graph with vertex set A where two vertices in A are adjacent if they have a
common neighbour in B in H. If we can find an embedding ¢ : A — V; such that for every edge
(a,b) of H', ¢(a) and ¢(b) have codegree at least N in G, then we can clearly extend ¢ to an
embedding of H greedily.

So, let us enumerate A = {a1, ..., a4} such that dg/(a1) > dyr(a2) > ... > dps(aj4)). Since

e(H') < N, it follows that the degree of each a; is at most % We will construct our embedding

¢ in order, starting at a;. Let us define as above ¢; = (%)j . We will ensure that the vertex a; is
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embedded in Aj, where j is the least positive integer such that ¢; < ﬁ. Note that, in this case

. i
Cj—1 2 IN-

Since n > 128¢ 73N,

45| > ¢ 40| > ¢jen

€ 1
> ng—1€2n

€1 4
“gan "
> 2

Suppose that we have already embedded all the vertices a; with £ < i and we wish to embed
a;. Let N~ (a;) be the set of vertices aj with k < ¢ which are adjacent to a; in H'. Each vertex
in A; has codegree at least N with all but at most ¢;|A;| < ;5|A;| other vertices in A; where
j is chosen as above for 7.

2N i |4 — |Ajl ; .
=X anlA | = 5 vertices of A; have

2
codegree at least N with every vertex in ¢ (N~ (a;)). Since in particular V;—j‘ > i, there is a
vertex in A;\ ¢({a1,...,a;—1) that has codegree at least N with every vertex in ¢ (N~ (a;)). We
let this vertex be ¢(a;) and continue. By induction we can find the desired embedding, finishing

the proof. n

Since a; has degree at most 2~ in H’, at least |A;| —
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3 Random Subgraphs

Recently interest has been shown in the following model of a random subgraph: Suppose G is
an arbitary graph, with minimum degree at least k, then for p € [0, 1] we define G, to be the
random subgraph of G obtained by including each each of G independently and with probability
p. When G = K1, the complete graph on k + 1 vertices, this gives the model G(k +1,p). We
are interested in the question of which properties of G(k + 1,p) also hold in G}, when p = p(k)
is a function of the minimum degree of G.

For certain properties there can clearly be no transference, for example connectedness, since
Gy itself might be disconnected. However, sometimes ‘local’ versions of these properties are
more natural to consider. For example, in G(k + 1,p) being connected is equivalent to have a
component of size at least k + 1, and it is perhaps possible to find a p(k) that guarantees this
in G.

3.1 Large components, paths and cycles

For example, let’s consider the behaviour of the random graph in the supercritical phase. We
know that as p goes from 1—;5 to 1—;?5, G(k,p) goes from having only small components to having
a giant component, whose size in linear in k. If we take G to be a union of many disjoint
copies of Kj1, then we see that we can’t hope to ask that G, has only small components in
the subcritical phase, and similarly we can’t ask for uniqueness of any large components in the
supercritical phase. However, we can still ask if it’s true that the size of the largest component
is at least linear in k in the supercritical regime. Indeed, it is easy to see that actually most of

the proofs for G(k,p) will work in this setting also.

We will follow the depth first search proof, both for ease of exposition, and also since with
only a little more work we can actually prove a slightly stronger result when (k) — 0 sufficiently
slowly.

1
Theorem 3.1. Let p = I—J]ge where ek = w ((lolfk) 3), let G be a graph with 6(G) > k. Then

with high probability G\, contains a connected component with at least % vertices.

For the proof we will need the following simple consequences of the Chernoff bound.

Lemma 3.2. Let Xq,...,Xn be a sequence of N = # many i.i.d Ber(p) random variables

with p = % then with high probability

7
(a) S X, <k

(b) For every ki <t<N
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7
Proof. The former is clear, since E <Z?11 Xi> =(1+ s)k% = o(k%) and for the latter we have,

for every fr <t < N the probability that

t

ZX@'—(l—I-s)%

=1

< k3.

is the probability that Bin(¢,p) is more that k3 from it’s expectation tp, which is at most
4
2(tp+57)

Since k‘% < tp < k this is at most exp<—k4> and hence by a union bound with high

ol

probability the inequality holds for all ki <t < N. 0

Proof of Theorem 3.1. We run the depth first search algorithm on G, starting at an arbitrary
root. Using the principle of deferred decisions we can think of our edge-queries as coming from
a sequence of i.i.d Ber(p) random variables X, Xo,.... By Lemma 3.2 we can assume that
properties (a) and (b) hold with high probability.

Our claim is that after that first N = % many queries in the DFS algorithm we are in
the midst of revealing a component whose size is at least % Recall that the depth first search
algorithm keeps track of three sets of vertices the stack A of active vertices, a set W of wvisited
vertices and a set U of unvisited vertices, and that at each point during the algorithm we have
queried every edge between U and W.

We claim that at time N the number of visisted vertives |W] is at most % Indeed, if not,
there was some point ¢ < N when |W| = %, and at that point

t
Al < 1+ZXi

=1
If t < k% then by (b) |A] <1+ ks < & and if ¢ > k7 then by (a)
k

k3 < —.
+ -3

It then follows that |U| > % (since AUU UW = V(G) and clearly |[V(G)| > §(G) = k).
Furthermore, since each vertex in W has degree at least k, and [AUW| < % it follows that each
vertex in W has at least % neighbours in U. However, then at this point we’'ve already queried

Wi

Al <1+ (1+e)

|+

at least % > N many edges between U and W, a contradiction.

Hence, at time N, |[W| < % If |A| > % then we’re done, since A always forms a path, and so
we may assume that U is non-empty, and so the algorithm is still running. Hence, in particular,
each positive query so far resulted in a vertex moving from U to A.

It follows that for every ]{;E <t<N

win

t
AUW| =D X > (14¢e) — k.
=1

|+
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If at any point during this time period A is empty, W is large, and so the algorithm has already
queried all the edges between W and U. Since every vertex in W has degree at least k, it has at
least k& — |[W| many neighbours in U and so we’ve already queried at least |W|(k — |W|) many
edges between U and W.

However, since (1+¢)f — ks < [W| < £, the parabola |W|(k — |[W]) will take its minmum
at the lower end of this range, and so we must have that

t> Wk —|W]) > <(1 +5)£ - k) (k —(1 +5>£ +k§>

2t2 5
3 5
> - . — a
> (1+¢) <1 (1+6)2>t 2%5

2
=(1+e) <1— —52>t—2k§

DO | M

>t

since t > kg, which is a contradiction. It follows that A is never empty for kg <t < N and
hence every positive query results in a vertex in the same component of G,. By our assumptions

on the sequence X7, Xs,... the number of positive queries in this range is at least
N N ki
)DETED L P¢
i ] i=1 i=1
ek 3 2
> (1 —i—&?)? —(14¢e)ki —2ks
ek
-2

As we saw before, a very similar proof will show that there is even a path of linear length
in G(k,p) with high probability, and the same proof will go through almost verbatim for the
random subgraph model. Furthermore, as ¢ — oo these proofs also show that the length of the
largest component/longest path will tend upwards to (1 — o(1))k.

In G(k,p) it is then relatively easy to find a long cycle, once you have a long path, using
sprinkling. However, this is not longer possible in G, indeed it could even be that the girth of
G is much larger than k, so knowing that we have a path of length linear in k doesn’t mean that
we must have many edges in order to sprinkle.

Using similar ideas as above, Krivelevich, Lee and Sudakov showed that you could at least
find a cycle of length at least (% — 0o(1))k, and then using some complicated arguments about
the possible structure of the graph G, used this to show that G, will indeed contain a cycle of
length at least (1 — o(1))k when p = w (7).

However, Riordan managed to give a much simpler proof, which we present below.

Theorem 3.3. Let G be a graph with §(G) > k and let p = w (%) Then with high probability
G, contains a cycle of length at least (1 —o(1))k.
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Proof. We explore the graph, as in the previous proof, using the DFS process. Let U, W and
A be as before, and let us write T for the forest that we produce via this search process. We
consider T as being a rooted forest, where each component is rooted at the first vertex of the
component that was added to A. Let us denote by R the set of edges of G that are not queried
in G, during the process.

For any v in T there is a unique path from v to the root of it’s component, which we will
imagine to be drawn vertically. Let us write A(v) for the set of ancestors of v in T, that is,
the set of vertices on this path. We write D(v) for the set of descendants of v in the tree,
those w such that v € A(w). Given an integer t we will write A;(v) and Dy(v) for the set of
ancestors/descendants of ¢ at distance exactly ¢, and A<;(v) and D<(v) for those at distance
at most . The depth of v is its distance from the root of its component and the height of v is
the max{t: Dy(v) # 0}.

Lemma 3.4. Fver edge e € R joins two vertices on some vertical path in T'.

Proof of Lemma. Let e = (u,v), and suppose that u is placed into W before v. When w is placed
into W, v cannot be in U, else we would have queried the edge (u,v), and so v must be in A.
Hence, at this point both v and u are on the stack, and so there is a vertical path from v to
U. O

Lemma 3.5. With high probability, at most 27” = o(kn) edges are queried during the DFS
process.

Proof of Lemma. At the end of the DFS process we have built a spanning forest T of G,,, which
thus has at most n edges. Each time an edge is queried it succeeds with probability p, and so
there are at most n successful queries during the process. However, the probability that more
than 27" queries made, but fewer than n successful queries is o(1). It follows that with high

probability there are at most 2?” edges queried. O

From this point on let us fix some small constant € > 0, where we will assume ¢ < %. We
say that a vertex v is full if it is incident with at least (1 — e)k edges in R.

Lemma 3.6. With high probability, all but o(n) vertices of T are full.

Proof of Lemma. Since §(G) > k, each v € V(T') which is not full is incident with at least ek
many queried edges. If there are at least dn many such vertices for any § > 0, then there are at

least %Ekn many queried edges. However, with high probability this doesn’t happen, by Lemma
3.5. O

Let us call a vertex rich if |D(v)| > ek and poor otherwise.

Lemma 3.7. Suppose that T contains o(n) poor vertices. Then for any constant C' > 0, all but
o(n) wvertices of T are at height at least Ck.

Proof of Lemma. For each rich vertex v, let P(v) be a set of exactly ek (ignoring floor/ceiling
signs for ease of presentation) descendants of v, obtained by choosing vertices in D(v) at maximal
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distance from v. Hence, for every w € P(v) we have D(w) C P(v), and so in particular
D(w) < ek, and so w is poor.

Consider the set S7 of ordered pairs (v, w) where v is rich and w € P(v). By assumption
there are (1 — o(1)n many rich vertices, and each have |P(v)| = ek and so |S1| > (1 — o(1))ekn.
However, for any vertex w we have that |A<;(w)| < 1, since every vertex has a unique ancestor
at each fixed distance less than it’s depth. Thus, if (v, w) € S; then w is poor, and v € A(w).
Hence, since there are only o(n) many poor vertices, the number of pairs (v,w) € S; with
d(v,w) < Ck is o(Ckn).

It follows that, S| = {(v,w) € S1: d(v,w) > Ck} has size at least (1 — o(1))ekn. Since each
vertex v is the first vertex in at most ek many pairs, it follows that there are at least (1 —o0(1))n
vertices v appearing in some pair (v, w) € S7, and so in particular each of these vertices is at
height at least Ck. O

Let us call a vertex v light if |D<_5.),(v)| < (1 — 4e)k, and heavy otherwise. Let H be the
set of heavy vertices in T'.

Lemma 3.8. Suppose that T contains o(n) poor vertices, and let X C V(T) have size | X| =
o(n). Then, for k large enough, T contains a vertical path P of length at least e =2k containing
at most 2k vertices in X U H.

Proof of Lemma. Let S be the set of pairs (u,v) where u € A(v) and 0 < d(u,v) < (1 — be)k.
Since each v has at most one ancestor at each distance, |S2| < (1 — 5¢)kn. On the other hand,
by Lemma 3.7, all but o(n) vertices u are at height at least k, and so appear in at least (1 —5¢)k
pairs (u,v) € Sy. It follows that only o(n) many vertices u can be in significantly more pairs in
Sy, for example in more than (1 —4e)k many, However, since every v € D<(;_s.);(u) contributes
to a pair (u,v) € So, it follows that H = o(n).

Let S5 be the set of pairs (u,v) where v € X U H, u is an ancestor of v and d(u,v) < e 2k.
Since each v can appear in at most ¢~ 2k pairs in S3, we see that |S3| < e 2k|X U H| = o(kn).
Hence, by double counting, only o(n) vertices u appear in more than 2k pairs (u,v) € Ss.

However, by Lemma 3.7, all but o(n) vertices are at height at least e~2k. So there is some
vertex u at height at least e 2k which appears in at most €2k many pairs (u,v) € S3. Let
P be the vertical path from u to some v € D.-2;(u). Then P has length e 2k and every
v € (X UH) N P appears in some pair (u,v) € S3, and so there are at most 2k many such v.
Hence P satisfies the conclusion of the lemma. O

We are finally ready to conclude the proof of the theorem. Recall that we explored G, via a
DEFS process and obtained a tree T' and a set R of unqueried edges, and with high probability
we may assume that these satisfy the conclusions of the previous lemmas. Note that the edges
of R are still present in G, independently with probability p.

Suppose that there is some vertex v such that
H{u: (u,v) € R,d(u,v) > (1 —5e)k}| > k. (3.1)
Then we can expose the edges (u,v) with d(u,v) > (1 — 5e)k in G), each of which is present
with probability p. However, since ekp — oo, it follows that with high probability one of the
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exposures is successful, resulting in a cycle of length at least (1 — ¢)k. Hence we may assume
that (3.1) fails for every vertex v. We note that in particular this implies that every full vertex
is rich. Indeed, suppose that v is full but poor. Then v is adjacent to at least (1 — )k many
edges in R, each of which goes between two vertices on a vertical path in T'. However, since v
has at most ek many descendants, at least (1 —2¢)k of these edges go to vertices u € A(v). Since
v has at most one ancestor at each distance, it follows that v satisfies (3.1), a contradiction.

Hence, since every full vertex is rich, and at most o(n) vertices are not full, at most o(n)
vertices in T  are poor. Let us apply Lemma 3.8 with X being the set of non-full vertices. We get
a path P such that there are at most €2k vertices in P which are in X UH, that is, which are light
or nor full. Let Z be the set of vertices in P which are full and light, so that |V (P)\ Z| < 2k.
Then, for any v € Z, since v is full there are at least (1 — )k vertices u € A(v) UD(v) such that
(u,v) € R. Since v does not satisfy (3.1), at least (1 — 2¢)k of these vertices are at distance at
most (1 — 5e)k to v. Furthermore, since v is light, it has few descendants and so at least 2¢k of
these vertices are in A(v).

Hence, since each vertex has at most one ancestor at each distance, we can find some set R(v)
of at least ek many vertices u € A(v) such that (u,v) € R and ek < d(u,v) < (1 —5e)k < k.
We will use these sets R(v) to find a long cycle.

Let us think of P as being oriented upwards towards the root, and let vy be the lowest vertex
in Z C P. Since |R(vg)| > ek and ekp — oo, with high probability there is some edge (ug,vo)
in G, with ug € R(vp). Let vy be the first vertex below ug on P with v; € Z.

Note that d(ug,vo) > ek and d(ug,v1) <1+ |[V(P)\ Z| < 2e%k, and so v; is above vg on P.
We repeat the same process from v;: find a uy € R(v1) with (u1,v1) € Gp and let vg be the first
vertex below u; on P. Since ! is a fixed constant, we can continue doing this to find vertices
{vi,u;: 1 < i < 271} such that, in the order < on P, vg < vy < up < v = u; < v3... with the
overlapping chords (u;,v;) € G, for each i. Note that, since d(u;,v;) < k, we remain within P
since P has length at least e k.

However it is relatively simple to use these chords, together with P, to form a cycles of length
at least (1 —2e712e?)k = (1 — 4¢)k.

We note that Krivelevich and Samotij showed, with different methods, but still using the
DFS process, that if p = 1—? then whp G, will contain a cycle whose length is linear in £.

3.2 Planarity

Similarly we could consider the planarity of a random subgraph. Recall that in G(n,p) there is
a sharp threshold for planarity at %; if p= % for d < 1 then with high probability G(n,p) is
planar and if p = % for d > 1 then with high probability G(n,p) is non-planar.

Again, clearly we cannot hope for the latter to also hold in an arbitrary random subgraph.
However if p is large enough then with high probability G, will be non-planar; indeed by consid-
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ering the average degree if p > 7 ¢ for a large constant C' then clearly G is with high probability
non-planar. The fact that this is true for any d > 1 was first shown by Frieze and Krivelevich.
We will give a slightly simplified version of their proof, due to Erde Kang and Krivelevich.

A rough sketch of the strategy is as follows. Let p = li and take p; = 1+§ and po =
117711; 1 > 3 ‘E . We want to find a connected part of G, which 1s relatively ‘dense’ 111 G, so that
after Sprlnkhng onto these edges with probability ps we will have with high probability a minor

with large average degree.

The following lemma makes this more precise.

Lemma 3.9. Let n, k be integers with n > Vk and K, c1,¢2 > 0 be constants. Suppose T is a
tree on n vertices with mazximum degree at most K — 1, F' is a set of cikn many edges on the
vertex set V(T'), and p = . Then whp T U F), is non-planar.

Proof. We first start by splitting 7' up into connected parts of size around vk. As long as n is
sufficiently large compared to vk, this is relatively easy to do in a greedy fashion. Indeed, as
long at |T'| > vk and A(T) < K — 1 there must be some vertex v such that the subtree T}, of T
rooted at v satisfies vk < |T,| < (K — 1)v/k, which can be seen by picking v to be the highest
vertex with |T,| > Vk.

It follows that we can find connected disjoint vertex sets A;j ..., A, C V(T such that
o V(T) = Uiz 4s;

e T[A;] is connected for each i; and

e VEk < |A;| < Kk for each i.

Indeed, we keep greedily choosing such a v and letting A; = T, until the remaining tree has size
< Vk, and we add the rest to the last A;.

Note that, since V = |JI_; 4; and |4;] > vk, r < k~2n. Let F’ be the set of edges in F
which are not contained in any A;. Then, since each A; contains at most (‘A;') < %k edges
inside it and |F'| > ¢1kn, it follows that for large k,

y K?
|F'| > |F| —r—k>cllm——\f > —kn

/ 3 .
Hence, on average each A; meets at least @ > c¢1k2 many edges in F’.

We recursively delete sets A;, and the edges in F” incident to them, which meet at most < k3
edges rlemalmng in F’; we must eventually stop this process before exhausting the Aj;, smce
r < k~2n (i.e. there are at most k~ 2n many A; ;) and

c1,3, 1 c1 |F|
—k2k = —kn < —.
g TR A= sy
Hence there is some subfamily, without loss of generality, {4;,..., A} of the A4;, and some

subset F" C F’ of edges which lie between A; and A; with 4,5 € [¢] such that at least %k%
edges of F” meet each A;.
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Note that 0 < epn(A;, Aj) < K2k for each pair i,j € [¢]. For each pair i,;j € [¢] such that
epr(Aiy Aj) > k let us delete epr(A;, Aj) — k many edges in F which lie between A4; and Aj,
and call the resulting set of edges F'. Then 0 < ez (A;, A;) < k for each i, j € [{] and furthermore

C1
e

each A; still meets at least k3 many edges of . Indeed, we deleted at most a (1 — %)

proportion of the edges in F” between each pair A; and A;, and hence at least a % proportion
of the edges meeting each A; remains.
In particular we have
cr 3
D ep(AiAy) > Uk (3.2)

Let H be an auxilliary (random) graph on [¢] such that i ~ j if and only if there is an edge
between A; and A; in F,. The number of edges between A4; and Aj in F, is distributed as
Bin(es(A;, Aj),p). Note that if np < 1/2, then P (Bin(n,p) #0) =1 — (1 —p)" > 2. Since
ep(Ai, Aj) < k and p = ¢, and without loss of generality we may assume that cz < %, it follows

that
Cgeﬁ,(Ai, A])

Pli~j) > —F—", 3.3
(i~j) =z ok (3-3)
By (3.2) and (3.3), we have
1 . . 1 CQ@F(Ai, Aj) 1 cieo .3 ciCy . 1
E(e(H)) =5 ,Z;;]P(Z Nz ,%} % aklar?” T greth?
1,] 2¥}

And so we expect H to have average degree (2 (k:%) It remains to show that e(H) is well
concentrated about its mean.

However, e(H) is the sum of independent Bernoulli random variables, and so Var(e(H)) <
E(e(H)). Hence, by Chebyshev’s inequality

P (e(H) < E(Q(QH))> <P (!e(H) ~E(e(H))| > E(eéﬂ >>) < 4;?2((1?};]2) < E(;H)) = o(1).

Hence, with high probability e(H) = Q (Ek%) and so H has average degree w(1). It follows

that H is non-planar. Finally, observe that by contracting each A; the graph H becomes a
minor of T"U F},, and so the result follows. O

We note that the conclusion of this lemma is much stronger than non-planarity, we found a
minor with average degree Q(vk).

In order to find such a tree we will start a (restricted) breadth-first search process in the
graph G),. If every vertex always has ~ k neighbours (in G) outside the current tree, then at at
each stage the frontier (the active vertices in tree) should grow in size by at least (1 + ), and
so always be at least some constant fraction of the whole tree.

However, if a large proportion of the vertices in the frontier do not have ~ k neighbours

outside the current tree, then they must all have ©(k) many neighbours inside the tree. This
would then give us sufficiently many edges in the tree to apply Lemma 3.9.
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Unfortunately there are a few technical details with following this strategy. Firstly, we need
to restrict our breath-first search process so that the tree we build has bounded maximum degree.
Secondly, we need to make sure that during the process of exposing the edges incident to the
frontier we don’t add too many neighbours of the frontier to the tree, since then our sketch
above wouldn’t work. Finally, in order to make sure this all happens with high probability we
need to first grow the tree ‘by hand’ for the first few stages, so that the tree is already large
when we start, this will necessitate throwing away some failed attempts, whose vertices we will
have to keep track of.

So, firstly let us give a simple bound on the expectation of a restricted binomial random
variable which will be useful later.

Lemma 3.10. Let X ~ Bin(n,p) be a binomial random wvariable with 2enp < K for some
constant K > 0. If Y = min{X, K}, then

E(Y)>np — K27K,

Proof. For every t < K we have that P(Y =t) > P(X =t). Hence, by standard estimates

t>K
<3 (*p)
-2\ K
< K27K,
since G < % O

Theorem 3.11. Let € be a positive constant, G be a graph with 6(G) > k, and p = % Then
whp G, is non-planar.

. . : 1+
Proof. Our plan will be to sprinkle with p; = —2 and py = 2= g L > o

Initial Phase : We first run an initial phase in which we build a partial binary tree Tj of size
logloglogk =: N in G,,. By a partial binary tree we mean a tree in which all vertices have
degree three or one, and in which there is a leaf r such that there is some integer L such that
every other leaf is at distance L or L — 1 from r.

We will do so via a sequence of trials. In a general stage we will have a set of discarded

vertices X which will have size o (logk), and a partial binary tree T" of size < N, such that so
far we have only exposed edges in G, which meet either X or a non-leaf vertex of 7.

31



We choose a leaf v € V(T”) of minimal distance to the root and expose the edges between v
and V' \ (X UV(T")) in Gp,. If v has at least two neighbours, we choose two of them arbitrarily
(or one if v is the root) and add them to 7" as children of v. Otherwise we say that the trial
fails and we add V(T”) to X and choose a new root v arbitrarily from V' \ X and set 7" = v. If
at any point |T"| = N we set Tp := T” and we finish the initial phase.

Since each v has at least k — | X UV(T")| > (1 — &)k many neighbours in V' \ (X UV (T")),
the probability that a trial fails is at most

P (Bin (1 — )k, p1) < 2) = (1 — p1) 1% 4 (1 — e)kpy (1 — pp )1 —9k1
S( —pi+ 1—6)(1+§))exp(—(l+g)(1—5)+p1>
<2 li=1-y< 1.

Hence, each time we choose a new root the probability that we build a suitable Ty before a

trial fails is at least
“YN

Therefore, whp we build such a tree before we've chosen v~V N new roots. Since we only ever
discard at most N vertices, during this process the number of discarded vertices is at most

7NV N? = (loglog k)~ 1°87 (loglog log k:)2 =o(logk).

Let Sy be the set of leaves of Ty and note that, since Ty is a partial binary tree as defined
above, [Sp| > i‘T{)‘. Furthermore, during this process we have only exposed edges which are
incident to either a vertex in X or a vertex in V(7p) \ Sp. In particular, we have not exposed
any edges between Sy and V' \ (X UV (Tp)).

Tree Branching Phase : Suppose then that in a general step we have a tree T; together with
a set Sy of leaves of T;, called the frontier of T;, with the following properties:

(a) |5t = 7517;

(b) No edges from S; to V'\ (X UV(T})) have been exposed in G,;

(¢) The maximum degree in 7" is at most K + 1,

where .
K :=4log -
€

is a large constant. Note that T and Sy satisfy these three properties.
Let 0 < § < € and let us consider the set
Vo ={s € S;:eq(s, Ti) > ok}.

If |[Vb| > 9|S¢|, then G[V(1})] contains a set F' of at least %]Sﬂk > & % | Tt|k many edges. In
particular, note that this implies that |T;| = Q(k).
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Since T; has bounded degree, by Lemma 3.9 when we sprinkle onto the edges of F' with
probability p2, whp we find a non-planar subgraph of G,

So, we may assume that |Vo| < §|S¢|. Let Vi = S\ Vo. Since | X| = o(k), every vertex s € V;
has degree at least (1—20)k to V' \ (X UV (T})). Let us arbitrarily order the set V4 = {s1,...,s,}.

We will build the new frontier S;y1 by exposing the neighbourhood of each s; in turn. At the
start of the process each s; has at least (1 — 2d)k many possible neighbours, however, as S;y1
grows, it may be that some s; have a significant fraction of their neighbours inside Sy 1.

Let us initially set S;+1(0) = () and B(0) = (. We will show that whp we can either find a
large complete minor, or construct, for each 1 < j < r, sets Si+1(j) and B(j), and a forest F(j),
such that:

L B(j) € {si: i € [j]} and [B(j)] < 4|Si;
2. Each s € B(j) has eq(s, Si+1(j)) > 0k;

3. There is a forest F'(j) of maximum degree K in G,, which joins each v € S;1(j) to some
se{s;i:i€e[jl}

Clearly this is satisfied with j = 0. Suppose we have constructed appropriate Si;1(j7 — 1) and
B(j—1).

If dg(sj, Si+1(j — 1)) > 0k then we let B(j) = B(j — 1) U sj, Si41(j) = Si+1(j — 1) and
F(j) = F(j —1). If |B(j)| > 6|S¢| then we can apply Lemma 3.9 to the edges spanned by
V(T; U F(5)), those include the edges in Eg(B(j), St+1(j))-

Then, |T; U F(j)| < |T}| + K|S| = O(|Ty]) and
|E(GIV(T; U F()])| > ec(B(), Sex1(4)) > 6%[Si|k = O(|Ti|k).

Hence, by Lemma 3.9 after sprinkling onto G[V (T3 U F'(j))] with probability po whp we have a
complete minor of order 2 (, / 10’; k)

Therefore, we may assume that |B(j)| < 6|S:| and so conditions (1)—(3) are satisfied by B(j),
Si+1(j) and F(j).

So, we may assume that dg(s;, Si+1(j—1)) < 9k, and hence s; has at least (1—30)k neighbours
in V\(V(T3)USi+1(j —1)). We expose the neighbourhood N (j) of s; in V' \ (V(T})USi41(j —1))
in Gp,. Let us choose an arbitrary subset N'(j) € N(j) of size min{N(j), K} and let F'(j) be
the set of edges from s; to N'(j). We set B(j) = B(j — 1), Si+1(j) = Si+1(j — 1) UN'(j) and
F(j)=F(j —1)UF'(j). Tt is clear that these now satisfy (1)—(3).

Hence we may assume that we have constructed Siy1(r), B(r), and F(r). Let us set Siy1 =
Sty1(r) and Ty = T3 U F(r). Note that Spyq is the frontier of T34, and so property (b) is

satisfied. Furthermore, since F'(r) has maximum degree K, so is property (c).

Finally, we note that, since |B(r)| < 0|S¢|, we exposed the neighbourhood N (j) of at least
(1 —20)|St| of the vertices in S;. Furthermore, the size of the union of their neighbourhoods is
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stochastically dominated by a sum of restricted binomial random variables. More precisely, if
we let

Y ~ min{Bin ((1 — 30)k,p1), K},
then the sizes of the neighbourhoods (N'(i): i € B(r)) are stochastically dominated by a se-
quence of r — |B(r)| many mutually independent copies of Y, (Y;: ¢ € B(r)). Hence, if we let
Z =) iap(r) Yi then |Sii4| is stochastically dominated by Z.

Note that

€ €
o< (1-— =(1— +-) <2
1 3 (1 =30)kp1 = (1 —30) (1 2) 2

Hence, since K = 4log% > 2e(1 — 30)kp1, Lemma 3.10 implies that

E(Y)z(1+§> K2 K
z<1+§>—K6—z
|
:<1+5>—4log<>82
3 €
g
>14 5
> 1+,

as long as € is sufficiently small.

Since r — |B(r)| > (1 — 20)|S], it follows that E(Z) > (1 — 20)|S|E(Y) > (1 + £)[S¢|. We
can then bound the probability that Z deviates from it’s mean using for example the Azuma-
Hoeffding inequality.

Indeed, since Z = Zie B(r) Y;, we can consider the exposure martingale of Z with respect to
the sequence (Y;: i ¢ B(r)). Since the Y; are independent, and take values in [0, K] it follows
that this martingale satisfies the bounded differences condition with this parameter K and hence
an application of the Azuma-Hoeffding inequality gives

P(Iswal < (1+2)15) <P (2 < (1+5) 15:])
<P (yz _E(Z)| > i’StD

20
62|St|2
<2 —
= exp( 4oo<r—|B<r>|>K2)
= e IS (3.4)

since r < |Sy|. It follows that with probability at least 1 — e~ (5D |8, 4] > (1 + $)1S¢, and it
is then a simple check that [S; 1| > {5|T¢+1| and hence property (a) is also satisfied.

Hence, we have shown that in the ¢th step we can either find a non-planar subgraph, or with
probability at least 1 — e~ (5) we can continue our tree growth. However, since G is finite the
tree growth cannot continue forever, and so, unless the tree growth fails at some step, we must
eventually find a non-planar subgraph.

Recall that the probability of failure is o(1) in the initial phase, and by (3.4) the probability
that the tree growth fails at some step is at most

3 e — o)
t
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since |So| > +logloglogk and |S;| > (14 £)|S;—1|. Hence the total probability of failure is o(1),
and so whp G, is non-planar. O

As with the comment after Lemma 3.9 we actually get the stronger conclusion that with high
probability &), contains a minor with average degree Vk. Tt follows from a well-known result of
Kostochka, and Thomason, that with high probability G}, contains a complete minor of order

Q (1£k) which is almost optimal (up to the polylogarithmic factor).
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4 Entropy Methods

4.1 Basic Results

Given a discrete random variable X let us denote by p(x) := P(X = z) for each x in the range
of X. We define the entropy of the random variable X to be

H(X) = %:p(l‘) log (p(l:c)>

Note that this quantity is always positive.

We want to think of entropy, at least heuristically, as a measure of the expected amount
of ‘surprise’ we have upon discovering the value of X. We then have the following heuristic
argument for why H(X) should be defined as above.

If we have an event A, such as the event X = x for some x, the amount of ‘surprise’ we have
at the event A happening should just be some functionf(p) of p := P(A). There are a number
of reasonable conditions we should expect f to satisfy:

e f(1) =0, since a certain event is no surprise;
e f should be decreasing, since rarer events are more surprising;
e f is continuous;

e f(pq) = f(p)+ f(q), which can be motivated by considering independent events happening
with probability p and ¢;

e finally, for normalisation we may as well assume f(1/2) = 1.

It turns out that f(p) = loép is the unique function satisfying these constraints. Then, H(X)

is the expected value, taken over the range of X, of the surprise of the event that X takes a
certain value, and so H(X) is the only ‘reasonable’ function representing the idea following these

heuristics.

As an example, consider X ~ Ber(p), then

H(X) =plog <;> + (1 —p)log <1ip>

and so as p — 1 or 0, H(X) — 0. Since this value will come up later in the course, we will write

h(p) := plog (;) + (1 —p)log <1ip>

It is not hard to see that the entropy of this particular X is maximised when p = 1/2, when
H(X) =1, and in fact in general we have that:

Lemma 4.1. Let X be a discrete random variable and let R be the range of X.
H(X) < log (|R]).

with equality if X is uniformly distributed.
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Proof. We will use the following consequence of Jensen’s inequality. Let f be concave on [a,b],
Ai > 0 such that Y ;" | A\; = 1 and let z1,...2, € [a,b]. Then if we consider a real random
variable Y taking the values x; with probability \;, we have that

S Nif(@i) = E(F(Y)) < f(E (ZA@).
=1

We note that f(z) = log (x) is a concave function on (0, 00), which can be seen since its derivative
1 is decreasing on (0,00), and so

= Y p(a) (1) (ij>=1og<u%|>.

TER
Finally it is easy to see that if X is uniformly distributed then p(z) = \Tlﬂ for each x € R and so

H(X) = log (|R]). B

This gives a useful connection between entropy and counting. We are going to define a whole
host of generalisations of the entropy function, and in order to try and give you some intuition
for such things, and give some working examples of calculating entropy, we’ll keep a motivating
example in mind as we go through these definitions.

Consider the probability space ) given by a sequence of N fair coin flips for N very large,
and the random variable X : Q — {0, 1}M where X; = 1 if the ith coin flip was heads and 0
if it was tails. For every subset A C [N] we can consider the random variable X 4 given by the
restriction of X to just the coordinates in A. In this way we have a correspondence between
random variables and subsets.

Since X 4 is uniformly distributed on {0,1}4, Lemma 4.1 tells us that H(X) = log [{0, 1}4| =
log 214l = |A]. So, in this setting there is a correspondence between the entropy of X 4 and the
cardinality of the set A.

Given two discrete random variables, X and Y, we define the joint entropy (X,Y) to be

Y) = zm: Zy:p(x,y) log (p(;y)>,

where, as before, p(x,y) := P(X = z,Y = y). Note that, if X and Y are independent then, by
definition p(z,y) = p(z)p(y) for all z € X and y € Y, and so

S SN

2 p
- zx: zy:p(w)p(y) (10% <p(1x)> +log (p(ly)>>

_ Zp )log ( )> > py) + Y p(y)log <p(1y)> ;p(ﬂ?)
= " p()log ((fg)> + 2 () los <<>>

- I;(X) +H(Y) y
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However, in general that will not be the case.

So, in our example if we have two subsets A and B, what will the joint entropy of X 4 and
Xp be? Well X 4 takes values in {0,1}4 and Xp takes values in {0, 1}2, but given z € {0,1}4
and y € {0,1}? it’s not necessarily true that p(z,y) = p(x)p(y), that is, the random variables
X4 and Xp are not necessarily independent. Indeed, since X4 and Xpg are restrictions of the
same random variable X, for every i € AN B we have (X4); = (XB);.

So, what will the term p(z,%) look like? Well, for a fixed 2 € {0,1}4, if y disagrees with
x in a coordinate ¢ € AN B, then p(x,y) is clearly 0. Otherwise, since A and B were both
uniformly distributed over their range, p(z,y) = 2M4BI=IAI=IBl and there are exactly 2/5|-14NB|
such y € {0,1}2 which agree with x on {0,1}4"5. Hence we can calculate

H(Xa, Xp) = ZZP”” y)log <p(rcl7y>)

= 2\Bw—|AnB| . 9lANBI=|AI=|B] g 9l AF|BI~IANB|

xr
_ 9lAI+IBI=|ANB| , 9 ANBI-|AI~|B| | ol Al+]BI-|ANB]

=|A|+|B|—-|ANB|=|AUB|.

So, in this context the joint entropy corresponds to the cardinality of the union A U B.

We also define the conditional entropy of Y given X in the following way. Let us write, as
another shorthand, p(y|z) := P(Y = y|X = z), and similarly p(z|y). We define

H(Y|X): Zp Zp(ylw) log (p(ylm))
= Zp YIX = )

- Ex( (YV|X = z)).

Where the first equation is a definition, and the other equalities are merely different ways to
rewrite this quantity. Note the difference between H(Y|X = z), which is the entropy of the
random variable (Y|X = z), and H(Y|X), which is the expected value of the latter over all
possible values of x. In particular, (Y|X) is not a random variable.

Back to our example, given subsets A and B and considering H(Xp|X4), what will p(y|z)
be? Well, as before, given a fixed z, this term is 0 unless 2 and y agree on {0,1}4"5 and if
they do agree on AN B then it is clear that p(y|z) = 2-1B\Al. Also, for each z, there are exactly
2lBI=1ANB| — 9lB\Al such y which agree with z on {0, 1}4"%. Hence we can calculate

H(Xp|Xa): Zp Zp y|r) log< (y\:c))
=y p(x)ng\A|2—|B\A| log (Q\B\A|)

= 2Mla=Ml g (2\3\14\)

= |B\ Al

So, in this context the conditional entropy corresponds to the cardinality of the set difference
B\ A.
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We can think of the conditional entropy as being the expected surprise in learning the value
of Y, given that the value of X is known. We might expect, heuristically, that having extra
knowledge should only decrease how surprised we are, and indeed that turns out to be the case:

Lemma 4.2 (Dropping conditioning). Let X,Y and Z be discrete random variables. Then

H(Y|X) < H(Y).

Proof. Noting that p(y)p(z|y) = p(x)p(y|x) = p(x,y), we see that

H(Y|X) = Zp ZP yle) 1°g< (ylx))
- Eyjp@) ;p“”y) o <p<yra:>>

)
_ 0 p(x)
= Zy:p(y)l g (; p(y)>
1
= zy:p(y) log (p(y))
— H(Y)

Where in the above we make repeated use of the fact that, if we sum the probabilities that a
random variable takes a specific value over its entire range, then the result is 1, and Jensen’s
inequality (See Lemma 4.1) in the third line. O

Using our correspondence between the set world and the random variable world, we can now
use Lemma 4.2 to say something about sets. Indeed, we have that

[B\ Al = H(Xp|X4) < H(Xp) = |B|.

In a similar fashion, any identity or inequality about entropy will specialise to a combinatorial
identity or inequality about finite sets. The converse is not true, but sometimes it can give
intuition about what identities may hold. For example, we know that |[AU B| = |A| + |B \ A|.
Translating this back into the language of entropy would give the statement H (X4, Xp) =
H(X4)+ H(Xp|X4), which we will see in fact holds for all pairs of random variables.

Lemma 4.3 (Chain rule). Let X and Y be discrete random variables. Then

H(X,Y)=H(X)+ H(Y|X).
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Proof.

st

=22 play)log (semm)

=3 st )tos () + 2 2_(zv)los (o)

- gp(x) log <p(1x)> + g ;p(x)p(y\w) log (1)@1@))

= H(X) + L ple) Ey:ff’(y‘””) tog <p(y1x>>

= H(X)+ H(Y|X)

O

One can also define the joint entropy of a sequence of discrete random variables X1, X, ..., Xp

in a similar way and by induction it follows that
H(Xl,XQ, ... ,Xn) = H(Xl) + H(XQ‘Xl) —+ ... H(Xn‘Xl,X27 .. ,Xn_l).

We shall sometimes also refer to this as the chain rule. Note that, by Lemma 4.2 and Lemma
4.3 we have that
i

This seemingly quite simple statement is really quite useful, since it allows us to reduce the
calculation of the entropy of a single random variable, to the calculation of many, hopefully
simpler, random variables. Often, using this we can turn quite ‘global’ calculations into ‘local’
ones which are much easier to deal with.

So far we have an analogue of set union and set difference, so a natural idea would be consider
the entropic function corresponding to intersection. Since |A N B| = |A| + |B| — |A U B this
quantity should be represented by H(X )+ H(Y)—H(X,Y). We call this the mutual information
of X and Y and it is denoted by I(X;Y). Note that, by Lemma 4.3

I(X;Y):=HX)+HY)—-H(X,Y)=H(X) - HX|Y) = HY) - HY|X).

As the name suggests, we can think of this quantity of measuring the amount of information
that X and Y share, and indeed this should be the amount of information ‘left’ from H (X)) after
we get rid of the information remaining in X once we know Y, H(X|Y). From Lemma 4.2 if
follows that I(X;Y) > 0, and in fact by analysing when we get equality in Jensen’s inequality
one can show that I(X;Y) = 0 if and only if X and Y are independent. Hence, the mutual
information is in some way a measure of the dependence of the random variables X and Y.
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4.2 Brégman’s Theorem

The permanent of an n x n matrix A is

perm(A) = Z Haia(i)

UESn =1

where S, is the set of permutations of [n]. Note that this is very close to the definition of det(A),
only with the factor of (—1)%"() removed. Given a 0/1 matrix A we should expect that we
can bound the permanent in terms of the number of non-zero entries of A in some way. In 1963
Minc gave a very natural conjecture for a bound given the row sums.

Conjecture 4.4 (Minc’s Conjecture). Let A be an n x n 0/1 matriz such that the sum of the
entries of the ith row is r;. Then

n 1
perm(A) < H(m!)ﬁ.
i=1

It turns out this conjecture can be very easily transformed into an equivalent conjecture
about graphs. There is a natural correspondence between n x n 0/1 matrices and bipartite
graphs with partition classes of size n. Given such a matrix A we can consider a graph G on
vertex set (V, W) where V = {vy,...,v,} and W = {wy,...,w,} with an edge between v; and
wj if and only if a;; = 1.

Now, a permutation o gives a non-zero contribution to perm(A) if and only if a;5;) = 1 for
all i € [n], that is, if and only if (vi,w,(;)) is an edge for every i € [n]. However, since o is
injective, {(vi, wy(;)): i € [n]} gives a perfect matching of G. Conversely, any perfect matching
M of G determines a permutation o of [n]| given by o(i) = j such that (v;,w;) € M, and the
contribution of this permutation to perm(A) is non-zero. Putting this together we see that if
we write ®(G) for the set of perfect matchings of G and ¢(G) = |®(G)| then

perm(A) = ¢(G).

Since the row sums of A are precisely the degrees of vertic